Mary Bouxsein

Massachusetts General Hospital, Boston, Massachusetts, United States

Are you Mary Bouxsein?

Claim your profile

Publications (30)149.67 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Combined teriparatide and denosumab increases spine and hip bone mineral density more than either drug alone. The effect of this combination on skeletal microstructure and microarchitecture, however, is unknown. Because skeletal microstructure and microarchitecture are important components of skeletal integrity, we performed highresolution peripheral QCT assessments at the distal tibia and radius in postmenopausal osteoporotic women randomized to receive teriparatide 20-μg daily (n=31), denosumab 60-mg every 6 months (n=33), or both (n=30) for 12 months. In the teriparatide group, total volumetric BMD (vBMD) did not change at either anatomic site but increased in both other groups at both sites. The increase in vBMD at the tibia was greater in the combination group (3.1±2.2%) than both the denosumab (2.2±1.9%) and teriparatide groups (-0.3±1.9%) (p<0.02 for both comparisons). Cortical vBMD decreased by 1.6±1.9% at the tibia and by 0.9±2.8% at the radius in the teriparatide group whereas it increased in both other groups at both sites. Tibia cortical vBMD increased more in the combination group (1.5±1.5%) than both monotherapy groups (p<0.04 for both comparisons). Cortical thickness did not change in the teriparatide group, but increased in both other groups. The increase in cortical thickness at the tibia was greater in the combination group (5.4±3.9%) than both monotherapy groups (p<0.01 for both comparisons). In the teriparatide group, radial cortical porosity increased by 20.9±37.6% and by 5.6±9.9% at the tibia but did not change in the other two groups. Bone stiffness and failure load, as estimated by finite element analysis, did not change in the teriparatide group but increased in the other two groups at both sites. Together, these findings suggest that the use of denosumab and teriparatide in combination improves HR-pQCT measures of bone quality more than either drug alone and may be of significant clinical benefit in the treatment of postmenopausal osteoporosis. © 2014 American Society for Bone and Mineral Research
    No preview · Article · Jan 2015 · Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with type 2 diabetes mellitus (DM2) have increased fracture risk. We found that African-American women with DM2 have increased cortical porosity and lower cortical bone density at the radius than non-diabetic controls. These cortical deficits are associated with hyperglycemia and may contribute to skeletal fragility associated with DM2. Fracture risk is increased in patients with type 2 diabetes mellitus (DM2) despite normal areal bone mineral density (aBMD). DM2 is more common in African-Americans than in Caucasians. It is not known whether African-American women with DM2 have deficits in bone microstructure. We measured aBMD at the spine and hip by DXA, and volumetric BMD (vBMD) and microarchitecture at the distal radius and tibia by HR-pQCT in 22 DM2 and 78 non-diabetic African-American women participating in the Study of Women Across the Nation (SWAN). We also measured fasting glucose and HOMA-IR. Age, weight, and aBMD at all sites were similar in both groups. At the radius, cortical porosity was 26 % greater, while cortical vBMD and tissue mineral density were lower in women with DM2 than in controls. There were no differences in radius total vBMD or trabecular vBMD between groups. Despite inferior cortical bone properties at the radius, FEA-estimated failure load was similar between groups. Tibia vBMD and microarchitecture were also similar between groups. There were no significant associations between cortical parameters and duration of DM2 or HOMA-IR. However, among women with DM2, higher fasting glucose levels were associated with lower cortical vBMD (r = -0.54, p = 0.018). DM2 and higher fasting glucose are associated with unfavorable cortical bone microarchitecture at the distal radius in African-American women. These structural deficits may contribute to the increased fracture risk among women with DM2. Further, our results suggest that hyperglycemia may be involved in mechanisms of skeletal fragility associated with DM2.
    No preview · Article · Nov 2014 · Osteoporosis International
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteocytes secrete paracrine factors that regulate the balance between bone formation and destruction. Among these molecules, sclerostin (encoded by the gene SOST) inhibits osteoblastic bone formation, and is an osteoporosis drug target. The molecular mechanisms underlying SOST expression remain largely unexplored. Here we report that histone deacetylase 5 (HDAC5) negatively regulates sclerostin levels in osteocytes in vitro and in vivo. HDAC5 shRNA increases, whereas HDAC5 overexpression decreases SOST expression in the novel murine Ocy454 osteocytic cell line. HDAC5 knockout mice show increased levels of SOST mRNA, more sclerostin-positive osteocytes, decreased Wnt activity, low trabecular bone density, and reduced bone formation by osteoblasts. In osteocytes, HDAC5 binds and inhibits the function of MEF2C, a crucial transcription factor for SOST expression. Using chromatin immunoprecipitation, we have mapped endogenous MEF2C binding in the SOST gene to a distal intergenic enhancer 45 kB downstream from the transcription start site. HDAC5 deficiency increases SOST enhancer MEF2C chromatin association and H3K27 acetylation and decreases recruitment of co-repressors NCoR and HDAC3. HDAC5 associates with and regulates the transcriptional activity of this enhancer, suggesting direct regulation of SOST gene expression by HDAC5 in osteocytes. Finally, increased sclerostin production achieved by HDAC5 shRNA is abrogated by simultaneous knockdown of MEF2C, indicating that MEF2C is a major target of HDAC5 in osteocytes. © 2014 American Society for Bone and Mineral Research.
    No preview · Article · Oct 2014 · Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt/β-catenin signaling underlies the pathogenesis of a broad range of human cancers, including the deadly plasma cell cancer multiple myeloma. In this study, we report that downregulation of the tumor suppressor microRNA miR-30-5p is a frequent pathogenetic event in multiple myeloma. Evidence was developed that miR-30-5p downregulation occurs as a result of interaction between multiple myeloma cells and bone marrow stromal cells, which in turn enhances expression of BCL9, a transcriptional coactivator of the Wnt signaling pathway known to promote multiple myeloma cell proliferation, survival, migration, drug resistance, and formation of multiple myeloma cancer stem cells. The potential for clinical translation of strategies to re-express miR-30-5p as a therapeutic approach was further encouraged by the capacity of miR-30c and miR-30 mix to reduce tumor burden and metastatic potential in vivo in three murine xenograft models of human multiple myeloma without adversely affecting associated bone disease. Together, our findings offer a preclinical rationale to explore miR-30-5p delivery as an effective therapeutic strategy to eradicate multiple myeloma cells in vivo. Cancer Res; 74(6); 1-13. ©2014 AACR.
    Full-text · Article · Mar 2014 · Cancer Research

  • No preview · Conference Paper · Feb 2014
  • Source
    R.J. Fajardo · L. Karim · V.I. Calley · M.L. Bouxsein

    Full-text · Article · Jan 2014 · Journal of Bone and Mineral Research
  • Lamya Karim · Amira I. Hussein · Elise F. Morgan · Mary L. Bouxsein
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone functions as the main load-bearing component of the musculoskeletal system, making it a classic subject for the study of biomechanics. Bone has a hierarchical structure and all levels play a role in its overall behavior and function. There are multiple factors that affect bone's mechanical behavior, such as tissue material properties and bone geometry and structure. These factors, which undergo numerous changes with age, contribute to whole bone's structural behavior. This chapter provides a review of classic bone biomechanics, the role of bone's structure and composition on its mechanical properties, the mechanical behavior of whole bone, and age-related changes in bone that contribute to fracture.
    No preview · Article · Jun 2013
  • P K Fazeli · K E Ackerman · L Pierce · G Guereca · M Bouxsein · M Misra
    [Show abstract] [Hide abstract]
    ABSTRACT: Excessive exercise can have detrimental effects on bone; however, the mechanisms leading to bone loss are not well understood. Sclerostin and preadipocyte factor (Pref)-1 are two hormones which inhibit bone formation. The present study demonstrates that these hormones may have differential effects in athletes as compared to non-athletes. Introduction Exercise activity is common in female adolescents, however, excessive exercise can have detrimental effects on bone mineral density (BMD). Mechanisms underlying this decrease in bone mass are not well understood. We investigated the effects of sclerostin, a potent inhibitor of bone formation via WNT signaling inhibition, and Pref-1, a suppressor of osteoblast differentiation, on BMD, bone turnover markers and bone strength in adolescent athletes. Methods We studied 50 adolescents between 15–21 years of age: 17 amenorrheic athletes (AA), 17 eumenorrheic athletes (EA), and 16 nonathletic controls (NA). We measured spine and hip BMD by dual energy x-ray absorptiometry and estimated failure load and stiffness at the distal radius and tibia using micro-finite element analysis. We also measured fasting sclerostin, Pref-1, N-terminal propeptide of type 1 procollagen, and C-terminal collagen cross-links levels. Results Sclerostin levels were higher in AA and EA compared with NA (AA: 0.42 ± 0.15 ng/mL, EA: 0.44 ± 0.09 ng/mL, NA: 0.33 ± 0.14 ng/mL; p = 0.047). In EA, sclerostin was positively associated with lumbar spine (LS) BMD and its Z-score (R = 0.52, p = 0.03 and R = 0.55, p = 0.02, respectively) whereas in NA, sclerostin was inversely associated with LS BMD (R = −0.61, p = 0.01). Pref-1 levels were similar in all three groups and there were significant inverse associations between Pref-1, BMD, and estimated bone strength in NA. Conclusions Sclerostin and Pref-1 may have differential effects on bone in adolescent athletes compared to non-athletes.
    No preview · Article · Apr 2013 · Osteoporosis International
  • Source
    M J Devlin · C Grasemann · A M Cloutier · L Louis · C Alm · M R Palmert · M L Bouxsein
    [Show abstract] [Hide abstract]
    ABSTRACT: Maternal high-fat (HF) diet can alter offspring metabolism via perinatal developmental programming. This study tests the hypothesis that maternal HF diet also induces perinatal programming of offspring bone mass and strength. We compared skeletal acquisition in pups from C57Bl/6J mice fed HF or normal diet from preconception through lactation. Three-week-old male and female pups from HF (HF-N) and normal mothers (N-N) were weaned onto normal diet. Outcomes at 14 and 26 weeks of age included body mass, body composition, whole-body bone mineral content (WBBMC) via peripheral dual-energy X-ray absorptiometry, femoral cortical and trabecular architecture via microcomputed tomography, and glucose tolerance. Female HF-N had normal body mass and glucose tolerance, with lower body fat (%) but higher serum leptin at 14 weeks vs N-N (P<0.05 for both). WBBMC was 12% lower at 14 weeks and 5% lower at 26 weeks, but trabecular bone volume fraction was 20% higher at 14 weeks in female HF-N vs N-N (P<0.05 for all). Male HF-N had normal body mass and mildly impaired glucose tolerance, with lower body fat (%) at 14 weeks and lower serum leptin at 26 weeks vs N-N (P<0.05 for both). Serum insulin was higher at 14 weeks and lower at 26 weeks in HF-N vs N-N (P<0.05). Trabecular BV/TV was 34% higher and cortical bone area was 6% higher at 14 weeks vs N-N (P<0.05 for both). These data suggest that maternal HF diet has complex effects on offspring bone, supporting the hypothesis that maternal diet alters postnatal skeletal homeostasis.
    Preview · Article · Mar 2013 · Journal of Endocrinology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lower bone density in young amenorrheic athletes (AA) compared to eumenorrheic athletes (EA) and non-athletes may increase fracture risk during a critical time of bone accrual. Finite element analysis (FEA) is a unique tool to estimate bone strength in vivo, and the contribution of cortical microstructure to bone strength in young athletes is not well understood. We hypothesized that FEA-estimated stiffness and failure load are impaired in AA at the distal radius and tibia compared to EA and non-athletes despite weight-bearing exercise. Cross-sectional study; Clinical Research Center 34 female endurance athletes involved in weight-bearing sports (17 AA, 17 EA) and 16 non-athletes (14-21 years) of comparable age, maturity and BMI OUTCOME MEASURES: We used HR-pQCT images to assess cortical microarchitecture and FEA to estimate bone stiffness and failure load. Cortical perimeter, porosity and trabecular area at the weight-bearing tibia were greater in both groups of athletes than non-athletes, whereas the ratio (%) of cortical to total area was lowest in AA. Despite greater cortical porosity in EA, estimated tibial stiffness and failure load was higher than in non-athletes. However, this advantage was lost in AA. At the non-weight-bearing radius, failure load and stiffness were lower in AA than non-athletes. After controlling for lean mass and menarchal age, athletic status accounted for 5-9% of the variability in stiffness and failure load, menarchal age for 8-23%, and lean mass for 12-37%. AA have lower FEA-estimated bone strength at the distal radius than non-athletes, and lose the advantage of weight-bearing exercise seen in EA at the distal tibia.
    No preview · Article · Aug 2012 · Bone
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iliac crest bone biopsies are used to assess the mechanism of action of drug treatments, yet there are little data comparing this site to sites prone to fracture. The purpose of this study was to compare the delay and the amplitude of responses to treatment in two different bone sites. The short-term effects of zoledronic acid and teriparatide on microarchitecture, collagen crosslinks and bone remodeling were evaluated in iliac crest and lumbar vertebrae. Aged ewes (n=8/gr) received either vehicle (CTRL) or a single injection of zoledronic acid (ZOL, 10mg) or daily injections of teriparatide (TPTD, 20 μg/d) for 3 months. Blood samples were collected monthly for assessing bone turnover markers. At the end of the study, a transiliac bone biopsy (IC) and L1 lumbar vertebrae (LV1) were collected to assess bone microarchitecture; pyridinoline (PYD), deoxypyridinoline (DPD), pentosidine (PEN) content, static and dynamic parameters of bone remodeling. In CTRL, Tb-BV/TV was significantly higher in LV1 than IC (p<0.0001). This was associated with a trend of higher Tb.N, Tb.Th, DA, an inferior Conn.D and a lower bone turnover as shown by the decreases of osteoid parameters, MS/BS, Ac.f in LV1 when compared to IC. In addition, the ratio PYD/DPD was 4 times higher in LV1 than IC. After 3 months, significant decreases of sALP (p<0.001) and sCTX (p<0.001) were observed in the ZOL-group whereas in TPTD-group, after transient increases, they returned to baseline values. When compared to their respective CTRL, ZOL induced significant increases in Tb.BV/TV, Conn.D, Tb.N and Tb.Sp, in IC but not in LV1. Regardless of the site, ZOL markedly depressed the bone turnover: The static parameters of bone formation significantly decreased and the diminution of MS/BS, BFR/BS and Ac.f varied from -94 to -98% vs CTRL (p<0.01 to 0.001). It was associated with a diminution of the DPD content and the PYD/DPD ratio mainly in IC cortices. In contrast, after 3 months, TPTD did not modify the 3D structure and microarchitecture in IC and LV1, except a trend of higher Conn.D in IC, compared to IC-CTRL. TPTD treatment induced a significant increase in cortical porosity in LV1 (p<0.05) when compared to LV1-CTRL. Static parameters of bone formation and resorption were augmented in both sites, significantly only in LV1 (p<0.05) with a trend of increases in MS/BS and BFR/BS, compared to LV1-CTRL. In conclusion, in adult ewes, the bone mass, microarchitecture, remodeling and collagen crosslink content differ according to the bone site (iliac crest and vertebra). Furthermore, after 3 months, the responses to ZOL and TPTD were of different magnitude and delay between the two bone sites. The distinction of bone sites to study the early effects of anti-osteoporotic therapies appears meaningful in order to approach their site-specific anti-fracture efficacy.
    No preview · Article · Jul 2012 · Bone
  • Source
    M J Devlin · M L Bouxsein
    [Show abstract] [Hide abstract]
    ABSTRACT: Early life nutrition has substantial influences on postnatal health, with both under- and overnutrition linked with permanent metabolic changes that alter reproductive and immune function and significantly increase metabolic disease risk in offspring. Since perinatal nutrition depends in part on maternal metabolic condition, maternal diet during gestation and lactation is a risk factor for adult metabolic disease. Such developmental responses may be adaptive, but might also result from constraints on, or pathological changes to, normal physiology. The rising prevalence of both obesity and osteoporosis, and the identification of links among bone, fat, brain, and gut, suggest that obesity and osteoporosis may be related, and moreover that their roots may lie in early life. Here we focus on evidence for how maternal diet during gestation and lactation affects metabolism and skeletal acquisition in humans and in animal models. We consider the effects of overall caloric restriction, and macronutrient imbalances including high fat, high sucrose, and low protein, compared to normal diet. We then discuss potential mechanisms underlying the skeletal responses, including perinatal developmental programming via disruption of the perinatal leptin surge and/or epigenetic changes, to highlight unanswered questions and identify the most critical areas for future research.
    Full-text · Article · Jun 2011 · Bone
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper reviews the evidence for an association between atypical subtrochanteric fractures and long-term bisphosphonate use. Clinical case reports/reviews and case-control studies report this association, but retrospective phase III trial analyses show no increased risk. Bisphosphonate use may be associated with atypical subtrochanteric fractures, but the case is yet unproven. A Working Group of the European Society on Clinical and Economic Aspects of Osteoporosis and Osteoarthritis and the International Osteoporosis Foundation has reviewed the evidence for a causal association between subtrochanteric fractures and long-term treatment with bisphosphonates, with the aim of identifying areas for further research and providing recommendations for physicians. A PubMed search of literature from 1994 to May 2010 was performed using key search terms, and articles pertinent to subtrochanteric fractures following bisphosphonate use were analysed. Several clinical case reports and case reviews report a possible association between atypical fractures at the subtrochanteric region of the femur in bisphosphonate-treated patients. Common features of these 'atypical' fractures include prodromal pain, occurrence with minimal/no trauma, a thickened diaphyseal cortex and transverse fracture pattern. Some small case-control studies report the same association, but a large register-based study and retrospective analyses of phase III trials of bisphosphonates do not show an increased risk of subtrochanteric fractures with bisphosphonate use. The number of atypical subtrochanteric fractures in association with bisphosphonates is an estimated one per 1,000 per year. It is recommended that physicians remain vigilant in assessing their patients treated with bisphosphonates for the treatment or prevention of osteoporosis and advise patients of the potential risks. Bisphosphonate use may be associated with atypical subtrochanteric fractures, but the case is unproven and requires further research. Were the case to be proven, the risk-benefit ratio still remains favourable for use of bisphosphonates to prevent fractures.
    Full-text · Article · Nov 2010 · Osteoporosis International

  • No preview · Article · Mar 2010 · Bone
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A recent study suggests that activin inhibits bone matrix mineralization, whereas treatment of mice with a soluble form of the activin type IIA receptor markedly increases bone mass and strength. To further extend these observations, we determined the skeletal effects of inhibiting activin signaling through the ActRIIA receptor in a large animal model with a hormonal profile and bone metabolism similar to humans. Ten female cynomolgus monkeys (Macaca fascicularis) were divided into two weight-matched groups and treated biweekly, for 3 months, with either a subcutaneous injection 10 mg/kg of a soluble form of the ActRIIA receptor fused with the Fc portion of human IgG(1) (ACE-011) or vehicle (VEH). Bone mineral density (BMD), micro-architecture, compressive mechanical properties, and ash fraction were assessed at the end of the treatment period. BMD was significantly higher in ACE-011 treated individuals compared to VEH: +13% (p=0.003) in the 5th lumbar vertebral body and +15% (p=0.05) in the distal femur. In addition, trabecular volumetric bone density at the distal femur was 72% (p=0.0004) higher than the VEH-treated group. Monkeys treated with ACE-011 also had a significantly higher L5 vertebral body trabecular bone volume (p=0.002) and compressive mechanical properties. Ash fraction of L4 trabecular bone cores did not differ between groups. These results demonstrate that treatment with a soluble form of ActRIIA (ACE-011) enhances bone mass and bone strength in cynomolgus monkeys, and provide strong rationale for exploring the use of ACE-011 to prevent and/or treat skeletal fragility.
    Full-text · Article · Sep 2009 · Bone
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early after estrogen loss in postmenopausal women and ovariectomy (OVX) of animals, accelerated endosteal bone resorption leads to marrow expansion of long bone shafts that reduce mechanical integrity. Both growth hormone (GH) and insulin-like growth factor (IGF-1) are potent regulators of bone remodeling processes. To investigate the role of the GH/IGF-1 axis with estrogen deficiency, we used the liver IGF-1-deficient (LID) mouse. Contrary to deficits in controls, OVX of LID mice resulted in maintenance of cortical bone mechanical integrity primarily owing to an enhanced periosteal expansion affect on cross-sectional structure (total area and cortical width). The serum balance in LID that favors GH over IGF-1 diminished the effects of ablated ovarian function on numbers of osteoclast precursors in the marrow and viability of osteocytes within the cortical matrix and led to less endosteal resorption in addition to greater periosteal bone formation. Interactions between estrogen and the GH/IGF-1 system as related to bone remodeling provide a pathway to minimize degeneration of bone tissue structure and osteoporotic fracture.
    Full-text · Article · Aug 2009 · Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Compressive fatigue properties of whole vertebrae, which may be clinically relevant for osteoporotic vertebral fractures, were determined in untreated, intact rats and zoledronic-acid-treated, ovariectomized rats. Typical fatigue behavior was found and was similar to that seen in other species. Fatigue properties were comparable between both groups. Osteoporosis is often treated with bisphosphonates, which reduce fracture risk. Effects of bisphosphonates on fatigue strength, which may be clinically relevant for vertebral fractures, are unknown. We determined vertebral, compressive fatigue properties in normal and zoledronic acid (ZOL)-treated, OVX rats. Thirty-five-week old Wistar rats were divided into SHAM-OVX (n = 7) and OVX with ZOL treatment (n = 5; single injection, 20 microg/kg b.w. s.c.). After 16 weeks, vertebral trabecular microarchitecture and cortical thickness were determined using micro-CT. Vertebrae were cyclically compressed in load-control at 2 Hz starting at 0.75% apparent strain. A line parallel to the apparent strain curve was drawn at 0.5% higher offset, after which the intersection was defined as the time to failure and the apparent strain at failure. Data were compared using Student's t test. Morphology and fatigue properties were the same in both groups. Samples failed between 10 min and 15 h. Force-displacement curves displayed typical fatigue behavior. Displacement increased over time due to mostly creep and to decreasing secant stiffness. We established a technique to determine compressive fatigue properties in the rat vertebral body. Our initial results indicate that ZOL-treated OVX rats have similar vertebral fatigue properties as SHAM-OVX controls.
    Preview · Article · Aug 2009 · Osteoporosis International
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonvertebral fractures account for 80% of all fractures and their accompanying morbidity and mortality. Despite this, the effect of drug therapy on cortical morphology has received limited attention, partly because cortical bone is believed to remodel less and decrease less with age than trabecular bone. However, the haversian canals traversing the cortex provide a surface for remodeling that produces bone loss, porosity, and cortical fragility. We developed a new method of 3D micro-computed tomography (microCT) to quantify intracortical porosity and the effects of treatment. Women with osteoporosis randomized to risedronate (5 mg/day, n = 28) or placebo (n = 21) had paired transiliac biopsies at baseline and 5 years imaged using 3D microCT. Pores determined from 8 to 12 slices were stratified by their minor axis length into those 25 to 100 microm (closing cone of haversian canals), 100 to 300 microm (cutting cone of haversian canals), and >300 microm (coalescent cavities). Porosity was analyzed as pore area (percent bone area) and pore density (pore number/mm(2)). Medians are reported. Risedronate reduced pore area in the 25 to 100, 100 to 300, and 300 to 500 microm ranges over 5 years (p = .0008, .04, NS, respectively) corresponding to an 18% to 25% reduction. In the placebo group, pore area was unchanged. At 5 years, pore area and pore number/mm(2) in the 25 to 100 microm range were each 17% lower in the risedronate group than in the placebo group (p = .02 and .04, respectively). Risedronate is likely to maintain bone strength and reduce nonvertebral fracture risk in part by reducing remodeling and therefore the number and size of intracortical cavities.
    Full-text · Article · Aug 2009 · Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research
  • M. J. Devlin · D. A. Panus · M. L. Bouxsein

    No preview · Article · May 2009 · Bone
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Strong correlations between serum IGF-1 levels and fracture risk indicate that IGF-1 plays a critical role in regulating bone strength. However, the mechanism by which serum IGF-1 regulates bone structure and fracture resistance remains obscure and cannot be determined using conventional approaches. Previous analysis of adult liver-specific IGF-1-deficient (LID) mice, which exhibit 75% reductions in serum IGF-1 levels, showed reductions in periosteal circumference, femoral cross-sectional area, cortical thickness, and total volumetric BMD. Understanding the developmental sequences and the resultant anatomical changes that led to this adult phenotype is the key for understanding the complex relationship between serum IGF-1 levels and fracture risk. Here, we identified a unique developmental pattern of morphological and compositional traits that contribute to bone strength. We show that reduced bone strength associated with low levels of IGF-1 in serum (LID mice) result in impaired subperiosteal expansion combined with impaired endosteal apposition and lack of compensatory changes in mineralization throughout growth and aging. We show that serum IGF-1 affects cellular activity differently depending on the cortical surface. Last, we show that chronic reductions in serum IGF-1 indirectly affect bone strength through its effect on the marrow myeloid progenitor cell population. We conclude that serum IGF-1 not only regulates bone size, shape, and composition during ontogeny, but it plays a more fundamental role-that of regulating an individual's ability to adapt its bone structure to mechanical loads during growth and development.
    Full-text · Article · Apr 2009 · Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research

Publication Stats

969 Citations
149.67 Total Impact Points

Institutions

  • 2014
    • Massachusetts General Hospital
      Boston, Massachusetts, United States
  • 2008-2014
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2003-2014
    • Beth Israel Deaconess Medical Center
      Boston, Massachusetts, United States
  • 2007
    • Harvard Medical School
      Boston, Massachusetts, United States