Li Jiang

Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States

Are you Li Jiang?

Claim your profile

Publications (12)73.15 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PurposePlexiform neurofibromas (pNF) are pathognomonic nerve and soft tissue tumors of neurofibromatosis type I (NF1), which are highly resistant to conventional chemotherapy and associated with significant morbidity/mortality. Disruption of aberrant SCF/c-Kit signaling emanating from the pNF microenvironment induced the first ever objective therapeutic responses in a recent phase 2 trial. Sunitinib malate is a potent, highly selective RTK inhibitor with activity against c-Kit, PDGFR, and VEGFR, which have also been implicated in the pathogenesis of these lesions. Here, we evaluate the efficacy of sunitinib malate in a preclinical Krox20;Nf1flox/− pNF murine model.Experimental DesignProliferation, β-hexosaminidase release (degranulation), and Erk1/2 phosphorylation were assessed in sunitinib treated Nf1+/− mast cells and fibroblasts, respectively. Krox20;Nf1flox/- mice with established pNF were treated sunitinib or PBS-vehicle control for a duration of 12 weeks. pNF metabolic activity was monitored by serial [18F]DG-PET/CT imaging.ResultsSunitinib suppressed multiple in vitro gain-in-functions of Nf1+/− mast cells and fibroblasts and attenuated Erk1/2 phosphorylation. Sunitinib treated Krox20;Nf1flox/− mice exhibited significant reductions in pNF size, tumor number, and FDG uptake compared to control mice. Histopathology revealed reduced tumor cellularity and infiltrating mast cells, markedly diminished collagen deposition, and increased cellular apoptosis in sunitinib treated pNF.Conclusions Collectively, these results demonstrate the efficacy of sunitinib in reducing tumor burden in Krox20;Nf1flox/− mice. These preclinical findings demonstrate the utility of inhibiting multiple RTKs in pNF and provide insights into the design of future clinical trials. Pediatr Blood Cancer © 2015 Wiley Periodicals, Inc.
    Full-text · Article · Sep 2015 · Pediatric Blood & Cancer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While nullizygous loss of NF1 leads to myeloid malignancies, haploinsufficient loss of NF1 (Nf1) has been shown to contribute to osteopenia and osteoporosis which occurs in approximately 50 percent of neurofibromatosis type 1 (NF1) patients. Bone marrow mononuclear cells of haploinsufficient NF1 patients and Nf1(+/-) mice exhibit increased osteoclastogenesis and accelerated bone turnover, however the culprit hematopoietic lineages responsible for perpetuating these osteolytic manifestations have yet to be elucidated. Here we demonstrate that conditional inactivation of a single Nf1 allele within the myeloid progenitor cell population (Nf1-LysM) is necessary and sufficient to promote multiple osteoclast gain-in-functions, resulting in enhanced osteoclastogenesis and accelerated osteoclast bone lytic activity in response to pro-resorptive challenge in vivo. Surprisingly, mice conditionally Nf1 heterozygous in mature, terminally differentiated osteoclasts (Nf1-Ctsk) do not exhibit any of these skeletal phenotypes, indicating a critical requirement for Nf1 haploinsufficiency at a more primitive/progenitor stage of myeloid development in perpetuating osteolytic activity. We further identified p21Ras dependent hyper-phosphorylation of Pu.1 within the nucleus of Nf1 haploinsufficent myelomoncytic osteoclast precursors, providing a novel therapeutic target for the potential treatment of NF1 associated osteolytic manifestations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Full-text · Article · Apr 2015 · Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTACTp21-activated kinase 2 (Pak2), a serine/threonine kinase, has been previously shown to be essential for hematopoietic stem cell (HSC) engraftment. However, Pak2 modulation of long-term hematopoiesis and lineage commitment remain unreported. Utilizing a conditional Pak2 knock out (KO) mouse model, we found that disruption of Pak2 in HSCs induced profound leukopenia and a mild macrocytic anemia. Although loss of Pak2 in HSCs leads to less efficient short- and long-term competitive hematopoiesis than wild type (WT) cells, it does not affect HSC self-renewal per se. Pak2 disruption decreased the survival and proliferation of multi-cytokine stimulated immature progenitors. Loss of Pak2 skewed lineage differentiation toward granulocytopoiesis and monocytopoiesis in mice as evidenced by 1) a three to six-fold increase in the percentage of peripheral blood granulocytes and a significant increase in the percentage of granulocyte-monocyte progenitors (GMPs) in mice transplanted with Pak2-disrupted BM; 2) Pak2-disrupted BM and c-kit+ cells yielded higher numbers of more mature subsets of granulocyte-monocyte colonies and polymophonuclear neutrophils (PMNs), respectively, when cultured in the presence of granulocyte-macrophage colony stimulating factor (GM-CSF). Pak2 disruption resulted respectively in decreased and increased gene expression of transcription factors JunB and c-Myc, which may suggest underlying mechanisms by which Pak2 regulates granulocyte-monocyte lineage commitment. Furthermore, Pak2 disruption led to 1) higher percentage of CD4+CD8+ double positive T cells and lower percentages of CD4+CD8- or CD4-CD8+ single positive T cells in thymus and 2) decreased numbers of mature B cells and increased numbers of Pre-Pro B cells in BM, suggesting defects in lymphopoiesis. This article is protected by copyright. All rights reserved.
    Full-text · Article · Jan 2015 · Stem Cells
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ASXL1 is mutated/deleted with high frequencies in multiple forms of myeloid malignancies and its alterations are associated with poor prognosis. De novo ASXL1 mutations cause Bohring-Opitz syndrome characterized by multiple congenital malformations. We show that Asxl1-deletion in mice led to developmental abnormalities including dwarfism, anophthalmia and 80% embryonic lethality. Surviving Asxl1(-/-) mice lived for up to 42 days and developed features of MDS, including dysplastic neutrophils and multiple lineage cytopenia. Asxl1(-/-) mice had a reduced HSC-pool and Asxl1(-/-) HSCs exhibited decreased hematopoietic repopulating capacity with skewed cell differentiation favoring granulocytic lineage. Importantly, Asxl1(+/-) mice also developed mild MDS-like disease, which could progress to MDS/MPN, demonstrating a haploinsufficient effect of Asxl1 in the pathogenesis of myeloid malignancies. Asxl1-loss led to an increased apoptosis and mitosis in LK cells, consistent with human MDS. Furthermore, Asxl1(-/-) LK cells exhibited decreased global levels of H3K27me3 and H3K4me3, and altered expression of genes regulating apoptosis (Bcl2, Bcl2l12 and Bcl2l13). Collectively, we report a novel ASXL1 murine model which recapitulates human myeloid malignancies, implying that Asxl1 functions as a tumor suppressor to maintain hematopoietic cell homeostasis. Future work is necessary to clarify the contribution of microenvironment to the hematopoietic phenotypes observed in the constitutional Asxl1(-/-) mice.
    Full-text · Article · Nov 2013 · Blood
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Upon infection, CD8(+) T cells undergo a stepwise process of early activation, expansion, and differentiation into effector cells. How these phases are transcriptionally regulated is incompletely defined. Here, we report that interferon regulatory factor 4 (IRF4), dispensable for early CD8(+) T cell activation, was vital for sustaining the expansion and effector differentiation of CD8(+) T cells. Mechanistically, IRF4 promoted the expression and function of Blimp1 and T-bet, two transcription factors required for CD8(+) T cell effector differentiation, and simultaneously repressed genes that mediate cell cycle arrest and apoptosis. Selective ablation of Irf4 in peripheral CD8(+) T cells impaired antiviral CD8(+) T cell responses, viral clearance, and CD8(+) T cell-mediated host recovery from influenza infection. IRF4 expression was regulated by T cell receptor (TCR) signaling strength via mammalian target of rapamycin (mTOR). Our data reveal that IRF4 translates differential strength of TCR signaling into different quantitative and qualitative CD8(+) T cell responses.
    Full-text · Article · Nov 2013 · Immunity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence has identified the role of granzyme B- and perforin-expressing CD4+ T cells with cytotoxic potential in antiviral immunity. However, the in vivo cytokine cues and downstream pathways governing the differentiation of these cells are unclear. Here, we have identified that CD4+ T cells with cytotoxic potential are specifically induced at the site of infection during influenza virus infection. The development of CD4+ T cells with cytotoxic potential in vivo was dependent on the cooperation of the STAT2-dependent type I interferon signaling and the interleukin-2/interleukin-2 receptor alpha pathway for the induction of the transcription factors T-bet and Blimp-1. We showed that Blimp-1 promoted the binding of T-bet to the promoters of cytolytic genes in CD4+ T cells and was required for the cytolytic function of the in vitro- and in vivo-generated CD4+ T cells with cytotoxic potential. Thus, our data define the molecular basis of regulation of the in vivo development of this functionally cytotoxic Th subset during acute respiratory virus infection. The potential implications for the functions of these cells are discussed.
    Full-text · Article · Aug 2013 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurofibromatosis type 1 (NF1) is a common genetic disorder affecting 1 in 3500 individuals. Patients with NF1 are predisposed to debilitating skeletal manifestations, including osteopenia/osteoporosis and long bone pseudarthrosis (non-union fracture). Hyperactivation of the Ras/mitogen-activated protein kinase (MAPK) pathway in NF1 is known to underlie aberrant proliferation and differentiation in cell lineages, including osteoclast progenitors and mesenchymal stem cells (MSCs) also known as osteoblast progenitors (pro-OBLs). Our current study demonstrates the hyper Ras/MAPK as a critical pathway underlying the pathogenesis of NF1 associated fracture repair deficits. Nf1-deficient pro-OBLs exhibit Ras/MAPK hyperactivation. Introduction of the NF1 GTPase activating related domain (NF1 GAP-related domain) in vitro is sufficient to rescue hyper Ras activity and enhance osteoblast (OBL) differentiation in Nf1(-/-) pro-OBLs and NF1 human (h) MSCs cultured from NF1 patients with skeletal abnormalities including pseudarthrosis or scoliosis. Pharmacologic inhibition of mitogen-activated protein kinase kinase (MEK) signaling with PD98059 partially rescues aberrant Erk activation while enhancing OBL differentiation and expression of OBL markers, osterix and osteocalcin, in Nf1-deficient murine pro-OBLs. Similarly, MEK inhibition enhances OBL differentiation of hMSCs. In addition, PD98059 rescues aberrant osteoclast maturation in Nf1 haploinsufficient bone marrow mononuclear cells. Importantly, MEK inhibitor significantly improves fracture healing in an NF1 murine model, Col2.3Cre;Nf1(flox/-). Collectively, these data indicate the Ras/MAPK cascade as a critical pathway in the pathogenesis of bone loss and pseudarthrosis related to NF1 mutations. These studies provide evidence for targeting the MAPK pathway to improve bone mass and treat pseudarthrosis in NF1.
    Full-text · Article · Jul 2013 · Human Molecular Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal abnormalities including osteoporosis and osteopenia occur frequently in both pediatric and adult neurofibromatosis type 1 (NF1) patients. NF1 (Nf1) haploinsufficient osteoclasts and osteoclast progenitors derived from both NF1 patients and Nf1(+/-) mice exhibit increased differentiation, migration, and bone resorptive capacity in vitro, mediated by hyperactivation of p21(Ras) in response to limiting concentrations of macrophage-colony stimulating factor (M-CSF). Here, we show that M-CSF binding to its receptor, c-Fms, results in increased c-Fms activation in Nf1(+/) (-) osteoclast progenitors, mediating multiple gain-in-functions through the downstream effectors Erk1/2 and p90RSK. PLX3397, a potent and selective c-Fms inhibitor, attenuated M-CSF mediated Nf1(+/-) osteoclast migration by 50%, adhesion by 70%, and pit formation by 60%. In vivo, we administered PLX3397 to Nf1(+/-) osteoporotic mice induced by ovariectomy (OVX) and evaluated changes in bone mass and skeletal architecture. We found that PLX3397 prevented bone loss in Nf1(+/-)-OVX mice by reducing osteoclast differentiation and bone resorptive activity in vivo. Collectively, these results implicate the M-CSF/c-Fms signaling axis as a critical pathway underlying the aberrant functioning of Nf1 haploinsufficient osteoclasts and may provide a potential therapeutic target for treating NF1 associated osteoporosis and osteopenia.
    Full-text · Article · Nov 2012 · PLoS ONE
  • Source

    Full-text · Article · Jul 2012 · Pediatric Blood & Cancer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Germline mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1 (NF1), a complex genetic disorder with a high predisposition of numerous skeletal dysplasias including short stature, osteoporosis, kyphoscoliosis, and fracture non-union (pseudoarthrosis). We have developed murine models that phenocopy many of the skeletal dysplasias observed in NF1 patients, including reduced bone mass and fracture non-union. We also show that the development of these skeletal manifestations requires an Nf1 haploinsufficient background in addition to nullizygous loss of Nf1 in mesenchymal stem/progenitor cells (MSCs) and/or their progenies. This is replicated in two animal models of NF1, PeriCre(+);Nf1(flox/-) and Col2.3Cre(+);Nf1(flox/-) mice. Adoptive transfer experiments demonstrate a critical role of the Nf1+/- marrow microenvironment in the impaired fracture healing in both models and adoptive transfer of WT bone marrow cells improves fracture healing in these mice. To our knowledge, this is the first demonstration of a non-cell autonomous mechanism in non-malignant NF1 manifestations. Collectively, these data provide evidence of a combinatory effect between nullizygous loss of Nf1 in osteoblast progenitors and haploinsufficiency in hematopoietic cells in the development of non-malignant NF1 manifestations.
    Full-text · Article · Sep 2011 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular signal-regulated kinases (ERK1 and 2) are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1(-/-) bone marrow mononuclear cells (BMMNCs) demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2(-/-) BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.
    Full-text · Article · Sep 2011 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intricately regulated Ras pathway coordinates multiple kit-ligand-induced mast cell functions, including chemotaxis, proliferation, and degranulation. However, the intracellular proteins that modulate the intensity and duration of stem cell factor-induced signals and the consequent cellular response are incompletely understood. Scaffolding proteins coordinate the spatial organization of mitogen-activated protein kinase proteins that may potentiate and/or inhibit cell functions. The kinase suppressor of Ras (KSR1) protein is known to function as a molecular scaffold and coordinates the organization of Raf/Mek/Erk in response to receptor tyrosine kinases. However, the impact of KSR1 in myeloid mast cell functions and in response to stem cell factor remains unknown. In the present study, we investigated the role of KSR1 in regulating cellular functions of bone marrow-derived mast cells of KSR1-deficient ((-/-)) mice. Genetic disruption of KSR1 resulted in both striking reductions in kit-ligand-mediated proliferation and degranulation, which are commonly attributed to mitogen-activated protein kinase signals. Surprisingly, disruption of the KSR1 scaffold also resulted in a decline in migration that is generally not linked to Raf-Erk signals. We found that loss of KSR1 does impact the biochemical activation of p21-activated kinase, a kinase that is known to modulate Raf-Erk signals and also F-actin polymerization key to mast cell migration. Collectively, these studies demonstrate that the scaffolding protein KSR1 has an important role in multiple kit-ligand-mediated mast cell functions. This study elucidates varied mast cell physiological functions for KSR1, including those related to cytoskeletal organization, and it suggests a novel molecular target for attenuating mast cell-mediated inflammation.
    Full-text · Article · Jul 2011 · Experimental hematology