Hai-Qing Zhang

Sichuan Agricultural University, Hua-yang, Sichuan, China

Are you Hai-Qing Zhang?

Claim your profile

Publications (4)7.59 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Plant-specific WRKY transcription factors (TFs) are involved in stress responses such as cold, high salinity, or drought as well as abscisic acid (ABA) signaling. However, their roles in abiotic stresses are still not well known in chrysanthemum. Here, we isolated a novel WRKY gene, DgWRKY1, from chrysanthemum (Dendranthema grandiflorum). DgWRKY1 contains one WRKY domain and one C2H2 zinc-finger motif (C-X4-C-X23-H-X-H), and was localized in the nucleus. Expression of DgWRKY1 was up-regulated by drought, salinity, and ABA. The DgWRKY1-overexpression tobacco plants were more tolerant to salt, and seed gerrmination was more sensitive to ABA, than the wild-type (WT). The transgenic lines exhibited less accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) under salt stress, and less antioxidant enzyme activity, including peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), than the WT under both control conditions and salt stress. In addition, there was greater up-regulation of the ROS-related enzyme genes (NtSOD, NtPOD, and NtCAT) in transgenic lines under normal or salt conditions. These findings suggest that DgWRKY1 plays a positive regulatory role in salt stress response.
    No preview · Article · Feb 2014 · Plant Molecular Biology Reporter
  • [Show abstract] [Hide abstract]
    ABSTRACT: A drought stress-responsive Cys2/His2-type zinc finger protein gene DgZFP3 was previously isolated (Liu et al., Afr J Biotechnol 11:7781-7788, 2012b) from chrysanthemum. To assess roles of DgZFP3 in plant drought stress responses, we performed gain-of-function experiment. The DgZFP3-overexpression tobacco plants showed significant drought tolerance over the wild type (WT). The transgenic lines exhibited less accumulation of H2O2 under drought stress, more accumulation of proline and greater activities of peroxidase (POD) and superoxide dismutase than the WT under both control conditions and drought stress. In addition, there was greater up-regulation of the ROS-related enzyme genes (NtSOD and NtPOD) and stress-related genes (NtLEA5 and NtDREB) in transgenic lines under normal or drought conditons. Thus DgZFP3 probably plays a positive regulatory role in drought stress response and has the potential to be utilized in transgenic breeding to improve drought stress tolerance in plants.
    No preview · Article · Jul 2013 · Biotechnology Letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: WRKY transcription factor genes (TFs) play important roles in response to various abiotic stresses. However, the roles of the chrysanthemum WRKY genes in abiotic stress response remain obscure. In this study, we functionally characterized a novel WRKY gene, DgWRKY3, from chrysanthemum (Dendranthema grandiflorum). Its expression in the chrysanthemum was up-regulated by salinity or dehydration stress, but not by abscisic acid (ABA). The DgWRKY3-overexpression tobacco plants increase salt tolerance compared with wild-type (WT) tobacco plants. The increased levels of proline were observed in transgenic plants compared to WT plants under salt stress. In addition, the DgWRKY3 transgenic plants reduced accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) compared with WT plants, accompanied by higher activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) and the greater accumulation of antioxidants including ascorbate (AsA) and glutathione (GSH) under salt stress. Moreover, the DgWRKY3 transgenic plants enhanced the expression of stress-related genes involved in osmotic adjustment and membrane protection (NtP5CS, NtLEA5, and NtERD10D) and oxidative stress response (NtSOD, NtPOD, NtCAT, and NtAPX) under salt stress. However, no significant difference in the expression of stress-related genes (NtP5CS, NtLEA5, NtERD10D, NtSOD, NtPOD, NtCAT, and NtAPX) was found between the DgWRKY3-overexpression and WT tobacco plants under normal conditions, despite the fact that the constitutive promoter was used to drive DgWRKY3. These findings suggest that DgWRKY3 functions as a positive regulator to mediate tolerance of plants to salt stress.
    No preview · Article · May 2013 · Plant Physiology and Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The plant-specific NAC (for NAM, ATAF1, 2 and CUC2) transcription factors (TFs) have been implicated in different cellular processes involved in stress responses such as cold, high salinity or drought as well as abscisic acid (ABA) signalling. However, the roles of the chrysanthemum NAC TF genes in plant stress responses are still unclear. A full-length cDNA designated DgNAC1, containing a highly conserved N-terminal DNA-binding NAC domain, has been isolated from chrysanthemum by RACE (rapid amplification of cDNA ends). It encodes a protein of 284 amino acids residues (=~32.9 kDa) and theoretical pI of 7.13. The transcript of DgNAC1 was enriched in roots and flowers than in stems and leaves of the adult chrysanthemum plants. The gene expression was strongly induced by ABA, NaCl, drought and cold treatment in the seedlings. Subcellular localization revealed that DgNAC1:GFP fusion protein was preferentially distributed to nucleus. To assess whether DgNAC1 is a practically useful target gene for improving the stress tolerance of chrysanthemum, we ectopically over-expressed the full-length DgNAC1 cDNA in tobacco and found that the 35S:DgNAC1 transgenic tobacco exhibited a markedly increased tolerance to salt. Despite this increased salt stress tolerance, the transgenic tobacco showed no detectable phenotype defects under normal growth conditions. These results proposed that DgNAC1 is appropriate for application in genetic engineering strategies aimed at improving salt stress tolerance in chrysanthemum.
    No preview · Article · Jun 2011 · Biotechnology Letters