Lin Zhang

China Medical University (PRC), Feng-t’ien, Liaoning, China

Are you Lin Zhang?

Claim your profile

Publications (2)6.69 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ketamine is a broadly used anaesthetic for analgosedation. Accumulating clinical evidence shows that ketamine causes pulmonary edema with unknown mechanisms. We measured the effects of ketamine on alveolar fluid clearance in human lung lobes ex vivo. Our results showed that intratracheal instillation of ketamine markedly decreased the reabsorption of 5% bovine serum albumin instillate. In the presence of amiloride (a specific ENaC blocker), fluid resolution was not further decreased, suggesting that ketamine could decrease amiloride-sensitive fraction of AFC associated with ENaC. Moreover, we measured the regulation of amiloride-sensitive currents by ketamine in A549 cells using whole-cell patch clamp mode. Our results suggested that ketamine decreased amiloride-sensitive Na+ currents (ENaC activity) in a dose-dependent fashion. These data demonstrate that reduction in lung ENaC activity and lung fluid clearance following administration of ketamine may be the crucial step of the pathogenesis of resultant pulmonary edema.
    Preview · Article · Oct 2011 · BioMed Research International
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salt absorption via alveolar epithelial Na(+) channels (ENaC) is a critical step for maintaining an airspace free of flooding. Previously, we found that 8-(4-chlorophenylthio)-guanosine-3',5'-cyclic monophosphate-Na (CPT-cGMP) activated native and heterologous ENaC. To investigate the potential pharmacological relevance, we applied this compound intratracheally to human lungs and found that ex vivo alveolar fluid clearance was increased significantly. Furthermore, this compound eliminated self-inhibition in human lung H441 cells and in oocytes expressing human αβγ but not δβγ channels. To further elucidate this novel mechanism, we constructed mutants abolishing (β(ΔV348) and γ(H233R)) or augmenting (α(Y458A) and γ(M432G)) self-inhibition. The mutants eliminating self-inhibition lost their responses to CPT-cGMP, whereas those enhancing self-inhibition facilitated the stimulatory effects of this compound. CPT-cGMP was unable to activate a high P(o) mutant (β(S520C)) and plasmin proteolytically cleaved channels. Our data suggest that elimination of self-inhibition of αβγ ENaC may be a novel mechanism for CPT-cGMP to stimulate salt reabsorption in human lungs.
    Full-text · Article · May 2011 · American Journal of Respiratory Cell and Molecular Biology