Jörg Bohlmann

University of British Columbia - Vancouver, Vancouver, British Columbia, Canada

Are you Jörg Bohlmann?

Claim your profile

Publications (223)969.06 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bark beetles (Coleoptera: Scolytinae) are pests of many forests around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant pest of western North American pine forests. The MPB is able to overcome the defences of pine trees through pheromone-assisted aggregation that results in a mass attack of host trees. These pheromones, both male and female produced, are believed to be biosynthesized in the midgut and/or fat bodies of these insects. We used metabolite analysis, quantitative proteomics (iTRAQ) and transcriptomics (RNA-seq) to identify proteins and transcripts differentially expressed between sexes and between tissues when treated with juvenile hormone III. Juvenile hormone III induced frontalin biosynthesis in males and trans-verbenol biosynthesis in females, as well as affected the expression of many proteins and transcripts in sex- and tissue-specific ways. Based on these analyses, we identified candidate genes involved in the biosynthesis of frontalin, exo-brevicomin, and trans-verbenol pheromones. Until March 12, 2016, free pdf available here: http://authors.elsevier.com/a/1SQF63RT964blz
    No preview · Article · Jan 2016 · Insect biochemistry and molecular biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant-derived diterpenoids serve as important pharmaceuticals, food additives, and fragrances, yet their low natural abundance and high structural complexity limits their broader industrial utilization. By mimicking the modularity of diterpene biosynthesis in plants, we constructed 51 functional combinations of class I and II diterpene synthases, 41 of which are "new-to-nature". Stereoselective biosynthesis of over 50 diterpene skeletons was demonstrated, including natural variants and novel enantiomeric or diastereomeric counterparts. Scalable biotechnological production for four industrially relevant targets was accomplished in engineered strains of Saccharomyces cerevisiae.
    Full-text · Article · Jan 2016 · Angewandte Chemie International Edition
  • Source

    Full-text · Dataset · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genome sequences of the plastid and mitochondrion of white spruce (Picea glauca) were assembled from whole-genome shotgun sequencing data using ABySS. The sequencing data contained reads from both the nuclear and organellar genomes, and reads of the organellar genomes were abundant in the data as each cell harbors hundreds of mitochondria and plastids. Hence, assembly of the 123-kb plastid and 5.9-Mb mitochondrial genomes were accomplished by analyzing data sets primarily representing low coverage of the nuclear genome. The assembled organellar genomes were annotated for their coding genes, ribosomal RNA, and transfer RNA. Transcript abundances of the mitochondrial genes were quantified in three developmental tissues and five mature tissues using data from RNA-seq experiments. C-to-U RNA editing was observed in the majority of mitochondrial genes, and in four genes, editing events were noted to modify ACG codons to create cryptic AUG start codons. The informatics methodology presented in this study should prove useful to assemble organellar genomes of other plant species using whole-genome shotgun sequencing data.
    Full-text · Article · Dec 2015 · Genome Biology and Evolution
  • Source

    Full-text · Dataset · Nov 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Conifers possess an array of physical and chemical defenses against stem boring insects. Stone cells provide a physical defense associated with resistance against bark beetles and weevils. In Sitka spruce (Picea sitchensis), abundance of stone cells in the cortex of apical shoots is positively correlated with resistance to white pine weevil (Pissodes strobi). We identified histological, biochemical, and molecular differences in the stone cell phenotype of weevil resistant (R) or susceptible (S) Sitka spruce genotypes. R trees displayed significantly higher quantities of cortical stone cells near the apical shoot node, the primary site for weevil feeding. Lignin, cellulose, xylan, and mannan were the most abundant components of stone cell secondary walls, respectively. Lignin composition of stone cells isolated from R trees contained a higher percentage of G-lignin compared to S trees. Transcript profiling revealed higher transcript abundance in the R genotype of coumarate 3-hydroxylase, a key monolignol biosynthetic gene. Developing stone cells in current year apical shoots incorporated fluorescent-tagged monolignol into the secondary cell wall, while mature stone cells of previous year apical shoots did not. Stone cell development is an ephemeral process and fortification of shoot tips in R trees an effective strategy against insect feeding.
    Full-text · Article · Oct 2015 · Plant Cell and Environment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Grindelia robusta or gumweed, is a medicinal herb of the sunflower family that forms a diverse suite of diterpenoid natural products. Its major constituents, grindelic acid and related grindelane diterpenoids accumulate in a resinous exudate covering the plants' surface, most prominently the unopened composite flower. Recent studies demonstrated potential pharmaceutical applications for grindelic acid and its synthetic derivatives. Mining of the previously published transcriptome of G. robusta flower tissue identified two additional diterpene synthases (diTPSs). We report the in vitro and in vivo functional characterization of an ent-kaurene synthase of general metabolism (GrTPS4) and a class II diTPS (GrTPS2) of specialized metabolism that converts geranylgeranyl diphosphate (GGPP) into labda-7,13E-dienyl diphosphate as verified by nuclear magnetic resonance (NMR) analysis. Tissue-specific transcript abundance of GrTPS2 in leaves and flowers accompanied by the presence of an endocyclic 7,13 double bond in labda-7,13E-dienyl diphosphate suggest that GrTPS2 catalyzes the first committed reaction in the biosynthesis of grindelic acid and related grindelane metabolites. With the formation of labda-7,13E-dienyl diphosphate, GrTPS2 adds an additional function to the portfolio of monofunctional class II diTPSs, which catalytically most closely resembles the bifunctional labda-7,13E-dien-15-ol synthase of the lycopod Selaginella moellendorffii. Together with a recently identified functional diTPS pair of G. robusta producing manoyl oxide, GrTPS2 lays the biosynthetic foundation of the diverse array of labdane-related diterpenoids in the genus Grindelia. Knowledge of these natural diterpenoid metabolic pathways paves the way for developing biotechnology approaches toward producing grindelic acid and related bioproducts. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    No preview · Article · Jun 2015 · The Plant Journal
  • Source

    Full-text · Dataset · Jun 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: White spruce (Picea glauca), a gymnosperm tree, has been established as one of the models for conifer genomics. We describe the draft genome assemblies of two white spruce genotypes, PG29 and WS77111, innovative tools for the assembly of very large genomes, and the conifer genomics resources developed in this process. The two white spruce genotypes originate from distant geographic regions of western (PG29) and eastern (WS77111) North America, and represent elite trees in two Canadian tree breeding programs. We present an update (V3 and V4) for a previously reported PG29 V2 draft genome assembly and introduce a second white spruce genome assembly for genotype WS77111. Assemblies of the PG29 and WS77111 genomes confirm the reconstructed white spruce genome size in the 20 Gbp range, and show broad synteny. Using the PG29 V3 assembly and additional white spruce genomics and transcriptomics resources, we performed MAKER-P annotation and meticulous expert annotation of very large gene families of conifer defense metabolism, the terpene synthases and cytochrome P450s. We also comprehensively annotated the white spruce mevalonate, methylerythritol phosphate and phenylpropanoid pathways. These analyses highlighted the large extent of gene and pseudogene duplications in a conifer genome, in particular for genes of secondary (i.e. specialized) metabolism, and the potential for gain and loss of function for defense and adaptation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Full-text · Article · May 2015 · The Plant Journal
  • Source
    Shaun D Jackman · Joerg Bohlmann · İnanç Birol
    [Show abstract] [Hide abstract]
    ABSTRACT: When working on an ongoing genome sequencing and assembly project, it is rather inconvenient when gene identifiers change from one build of the assembly to the next. The gene labelling system described here, UniqTag, addresses this common challenge. UniqTag assigns a unique identifier to each gene that is a representative k-mer, a string of length k, selected from the sequence of that gene. Unlike serial numbers, these identifiers are stable between different assemblies and annotations of the same data without requiring that previous annotations be lifted over by sequence alignment. We assign UniqTag identifiers to ten builds of the Ensembl human genome spanning eight years to demonstrate this stability. The implementation of UniqTag in Ruby and an R package are available at https://github.com/sjackman/uniqtag sjackman/uniqtag. The R package is also available from CRAN: install.packages ("uniqtag"). Supplementary material and code to reproduce it is available at https://github.com/sjackman/uniqtag-paper.
    Preview · Article · May 2015 · PLoS ONE
  • Source
    Philipp Zerbe · Jörg Bohlmann
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants produce thousands of diterpenoid natural products; some of which are of significant industrial value as biobased pharmaceuticals (taxol), fragrances (sclareol), food additives (steviosides), and commodity chemicals (diterpene resin acids). In nature, diterpene synthase (diTPS) enzymes are essential for generating diverse diterpene hydrocarbon scaffolds. While some diTPSs also form oxygenated compounds, more commonly, oxygenation is achieved by cytochrome P450-dependent mono-oxygenases. Recent genome-, transcriptome-, and metabolome-guided gene discovery and enzyme characterization identified novel diTPS functions that form the core of complex modular pathway systems. Insights into diterpene metabolism may translate into the development of new bioengineered microbial and plant-based production systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Full-text · Article · May 2015 · Trends in Biotechnology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Western redcedar (WRC; Thuja plicata) produces high amounts of oxygenated thujone monoterpenoids associated with resistance against herbivore feeding, particularly ungulate browsing. Thujones and other monoterpenoids accumulate in glandular structures in the foliage of WRC. Thujones are produced from (+)-sabinene by sabinol and sabinone. Using metabolite analysis, enzyme assays with WRC tissue extracts, cloning, and functional characterization of cytochrome P450 monooxygenases, we established that transsabin- 3-ol but not cis-sabin-3-ol is the intermediate in thujone biosynthesis in WRC. Based on transcriptome analysis, full-length complementary DNA cloning, and characterization of expressed P450 proteins, we identified CYP750B1 and CYP76AA25 as the enzymes that catalyze the hydroxylation of (+)-sabinene to trans-sabin-3-ol. Gene-specific transcript analysis in contrasting WRC genotypes producing high and low amounts of monoterpenoids, including a glandless low-terpenoid clone, as well as assays for substrate specificity supported a biological role of CYP750B1 in a- and b-thujone biosynthesis. This P450 belongs to the apparently gymnosperm-specific CYP750 family and is, to our knowledge, the first member of this family to be functionally characterized. In contrast, CYP76AA25 has a broader substrate spectrum, also converting the sesquiterpene farnesene and the herbicide isoproturon, and its transcript profiles are not well correlated with thujone accumulation.
    Full-text · Article · May 2015 · Plant physiology
  • Philipp Zerbe · Jörg Bohlmann
    [Show abstract] [Hide abstract]
    ABSTRACT: Ambrox and related ambroxides are highly priced in the fragrance industry, and valued for their delicate odor and fixative properties. Historically, ambrox was obtained from ambergris, a waxy excretion produced by sperm whales, now an endangered species. Synthetic ambroxides have replaced ambergris in perfume manufacture. Plant labdane diterpenoids can serve as starting material for ambroxide synthesis. Among these, the diterpene alcohol sclareol is the major industrial precursor obtained from cultivated clary sage (Salvia sclarea). In plants, a large family of diterpene synthase (diTPS) enzymes controls key reactions in diterpenoid biosynthesis. Advanced metabolite profiling and high-throughput sequencing of fragrant and medicinal plants have accelerated discovery of novel diTPS functions, providing a resource for combinatorial synthetic biology and metabolic engineering approaches. This chapter highlights recent progress on the discovery, characterization, and engineering of plant diTPSs with potential uses in ambroxide production. It features biosynthesis of sclareol, cis-abienol, and diterpene resin acids, as sources of genes and enzymes for diterpenoid bioproducts. Graphical Abstract
    No preview · Article · Apr 2015 · Advances in Biochemical Engineering/Biotechnology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thuja plicata (western redcedar, WRC) produces high amounts of oxygenated thujone monoterpenoids associated with resistance against herbivore feeding, in particular ungulate browsing. Thujones and other monoterpenoids accumulate in glandular structures in the foliage of WRC. Thujones are produced from (+)-sabinene via sabinol and sabinone. Using metabolite analysis, enzyme assays with WRC tissue extracts, cloning and functional characterization of cytochrome P450 monooxygenases (P450s), we established that trans-sabin-3-ol, but not cis-sabin-3-ol, is the intermediate in thujone biosynthesis in WRC. Based on transcriptome analysis, full-length cDNA cloning and characterization of expressed P450 proteins we identified CYP750B1 and CYP76AA25 as the enzymes that catalyze the hydroxylation of (+)-sabinene to trans-sabin-3-ol. Gene specific transcript analysis in contrasting WRC genotypes producing high and low amounts of monoterpenoids, including a glandless low-terpenoid clone, as well as assays for substrate specificity supported a biological role of CYP750B1 in α- and β-thujone biosynthesis. This P450 belongs to the apparently gymnosperm-specific CYP750 family, and appears to be the first member of this family to be functionally characterized. In contrast, CYP76AA25 has a broader substrate spectrum, converting also the sesquiterpene farnesene and the herbicide isoproturon, and its transcript profiles are not well correlated with thujone accumulation. Copyright © 2015, Plant Physiology.
    Preview · Article · Mar 2015 · Plant physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The bark beetle-associated fungus Grosmannia clavigera participates in the large-scale destruction of pine forests. In the tree, it must tolerate saturating levels of toxic conifer defense chemicals (e.g. monoterpenes). The fungus can metabolize some of these compounds through the ß-oxidation pathway and use them as a source of carbon. It also uses carbon from pine triglycerides, where oleic acid is the most common fatty acid. High levels of free fatty acids, however, are toxic and can cause additional stress during host colonization. Fatty acids induce expression of neighboring genes encoding a cytochrome P450 (CYP630B18) and its redox partner, cytochrome P450 reductase (CPR2). The aim of this work was to study the function of this novel P450 system. Using LC/MS, we biochemically characterized CYP630 as a highly specific oleic acid ω-hydroxylase. We explain oleic acid specificity using protein interaction modeling. Our results underscore the importance of ω- oxidation when the main ß-oxidation pathway may be overwhelmed by other substrates such as host terpenoid compounds. Because this CYP-CPR gene cluster is evolutionarily conserved, our work has implications for metabolism studies in other fungi.
    Full-text · Article · Mar 2015 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fragrant heartwood oil of West Australian sandalwood (Santalum spicatum) contains a mixture of sesquiterpene olefins and alcohols, including variable levels of the valuable sesquiterpene alcohols, α- and β-santalol, and often high levels of E,E-farnesol. Transcriptome analysis revealed sequences for a nearly complete set of genes of the sesquiterpenoid biosynthetic pathway in this commercially valuable sandalwood species. Transcriptome sequences were produced from heartwood xylem tissue of a farnesol-rich individual tree. From the assembly of 12,537 contigs, seven different terpene synthases (TPSs), several cytochromes P450, and allylic phosphatases were identified, as well as transcripts of the mevalonic acid and methylerythritol phosphate pathways. Five of the S. spicatum TPS sequences were previously unknown. The full-length cDNA of SspiTPS4 was cloned and the enzyme functionally characterized as a multi-product sesquisabinene B synthase, which complements previous characterization of santalene and bisabolol synthases in S. spicatum. While SspiTPS4 and previously cloned sandalwood TPSs do not explain the prevalence of E,E-farnesol in S. spicatum, the genes identified in this and previous work can form a basis for future studies on natural variation of sandalwood terpenoid oil profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.
    No preview · Article · Jan 2015 · Phytochemistry

  • No preview · Conference Paper · Nov 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested the hypothesis that Arabidopsis can recognize and respond differentially to insect species at the transcriptional level using a genome wide microarray. Transcriptional reprogramming was characterized using co-expression analysis in damaged and undamaged leaves at two times in response to mechanical wounding and four insect species. In all, 2778 (10.6%) of annotated genes on the array were differentially expressed in at least one treatment. Responses differed mainly between aphid and caterpillar and sampling times. Responses to aphids and caterpillars shared only 10% of up-regulated and 8% of down-regulated genes. Responses to two caterpillars shared 21 and 12% of up- and down-regulated genes, whereas responses to the two aphids shared only 7 and 4% of up-regulated and down-regulated genes. Overlap in genes expressed between 6 and 24 h was 3-15%, and depended on the insect species. Responses in attacked and unattacked leaves differed at 6 h but converged by 24 h. Genes responding to the insects are also responsive to many stressors and included primary metabolism. Aphids down-regulated amino acid catabolism; caterpillars stimulated production of amino acids involved in glucosinolate synthesis. Co-expression analysis revealed 17 response networks. Transcription factors were a major portion of differentially expressed genes throughout and responsive genes shared most of the known or postulated binding sites. However, cis-element composition of genes down regulated by the aphid M. persicae was unique, as were those of genes down-regulated by caterpillars. As many as 20 cis-elements were over-represented in one or more treatments, including some from well-characterized classes and others as yet uncharacterized. We suggest that transcriptional changes elicited by wounding and insects are heavily influenced by transcription factors and involve both enrichment of a common set of cis-elements and a unique enrichment of a few cis-elements in responding genes.
    Full-text · Article · Nov 2014 · Frontiers in Plant Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed proteome profiles for host colonizing mountain pine beetle adults, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Adult insects were fed in pairs on fresh host lodgepole pine, Pinus contorta Dougl. ex Loud, phloem tissue. The proteomes of fed individuals were monitored using iTRAQ and compared to those of starved beetles, revealing 757 and 739 expressed proteins in females and males, respectively, for which quantitative information was obtained. Overall functional category distributions were similar for males and females, with the majority of proteins falling under carbohydrate metabolism (glycolysis, gluconeogenesis, citric acid cycle), structure (cuticle, muscle, cytoskeleton), and protein and amino acid metabolism. Females had 23 proteins with levels that changed significantly with feeding (p<0.05, FDR<0.20), including chaperones and enzymes required for vitellogenesis. In males, levels of 29 proteins changed significantly with feeding (p<0.05, FDR<0.20), including chaperones as well as motor proteins. Only two proteins, both chaperones, exhibited a significant change in both females and males with feeding. Proteins with differential accumulation patterns in females exhibited higher fold changes with feeding than did those in males. This difference may be due to major and rapid physiological changes occurring in females upon finding a host tree during the physiological shift from dispersal to reproduction. The significant accumulation of chaperone proteins, a cytochrome P450, and a glutathione S-transferase, indicate secondary metabolite-induced stress physiology related to chemical detoxification during early host colonization. The females' activation of vitellogenin only after encountering a host indicates deliberate partitioning of resources and a balancing of the needs of dispersal and reproduction.
    Full-text · Article · Oct 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world's forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20-30 Gbp) and highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: White spruce (Picea glauca), Norway spruce (P. abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared to other plant genomes, and may represent a window into the past of seed plant genomes. This update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes.
    Full-text · Article · Oct 2014 · Plant physiology

Publication Stats

13k Citations
969.06 Total Impact Points


  • 2000-2016
    • University of British Columbia - Vancouver
      • • Michael Smith Laboratories
      • • Department of Forest Sciences
      Vancouver, British Columbia, Canada
  • 2015
    • Universität Potsdam
      • Institute of Biochemistry and Biology
      Potsdam, Brandenburg, Germany
  • 2014
    • Laval University
      • Institute of Integrative Biology and Systems
      Quebec City, Quebec, Canada
  • 2013
    • University of Hamburg
      • Biocenter Klein Flottbek and Botanical Garden (BioZ Flottbek)
      Hamburg, Hamburg, Germany
  • 2011
    • Government of British Columbia, Canada
      Vancouver, British Columbia, Canada
  • 2006
    • Simon Fraser University
      • Department of Biological Sciences
      Burnaby, British Columbia, Canada
  • 2003
    • Purdue University
      • Department of Horticulture and Landscape Architecture
      West Lafayette, IN, United States
  • 2000-2002
    • Max Planck Institute for Chemical Ecology
      • Department of Biochemistry
      Jena, Thuringia, Germany
  • 1997-1999
    • Washington State University
      • Institute of Biological Chemistry
      پولمن، واشینگتن, Washington, United States