Are you Christophe Chambon?

Claim your profile

Publications (109)

  • [Show abstract] [Hide abstract] ABSTRACT: Natural collagen is easily available from animal tissues such as bones. Main limitations reported in the use of natural collagen are heterogeneity and loss of integrity during recovery. However, its natural complexity, functionality and bioactivity still remain to be achieved through synthetic and recombinant ways. Variability of physicochemical properties of collagen extracted from bovine bone by acetic acid was then investigated taking into account endogenous and exogenous factors. Endogenous: bovine's bones age (4 and 7 years) and anatomy (femur and tibia); exogenous: thermal treatments (spray-drying and lyophilisation). Scanning electron microscopy, spectroscopy (EDS, FTIR, UV/Vis and CD), differential scanning calorimetry (DSC), centesimal composition, mass spectrometry, amino acids and zeta-potential analysis were used for the purpose. Age correlated negatively with yield of recovery and positively with minerals and proteoglycans content. Comparing the anatomy, higher yields were found for tibias, and higher stability of tibias collagen in solution was noticed. Whatever the age and the anatomy, collagens were able to renature and to self-assemble into tri-dimensional structures. Nonetheless thermal stability and kinetics of renaturation were different. Variability of natural collagen with bone age and anatomy, and drying methodology, may be a crucial advantage to conceive tailor-made applications in either the biological or technical sector.
    Article · Dec 2016 · International journal of biological macromolecules
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Background Plant cell wall (PCW) polysaccharides and especially xylans constitute an important part of human diet. Xylans are not degraded by human digestive enzymes in the upper digestive tract and therefore reach the colon where they are subjected to extensive degradation by some members of the symbiotic microbiota. Xylanolytic bacteria are the first degraders of these complex polysaccharides and they release breakdown products that can have beneficial effects on human health. In order to understand better how these bacteria metabolize xylans in the colon, this study was undertaken to investigate xylan breakdown by the prominent human gut symbiont Bacteroides xylanisolvens XB1AT. Results Transcriptomic analyses of B. xylanisolvens XB1AT grown on insoluble oat-spelt xylan (OSX) at mid- and late-log phases highlighted genes in a polysaccharide utilization locus (PUL), hereafter called PUL 43, and genes in a fragmentary remnant of another PUL, hereafter referred to as rPUL 70, which were highly overexpressed on OSX relative to glucose. Proteomic analyses supported the up-regulation of several genes belonging to PUL 43 and showed the important over-production of a CBM4-containing GH10 endo-xylanase. We also show that PUL 43 is organized in two operons and that the knockout of the PUL 43 sensor/regulator HTCS gene blocked the growth of the mutant on insoluble OSX and soluble wheat arabinoxylan (WAX). The mutation not only repressed gene expression in the PUL 43 operons but also repressed gene expression in rPUL 70. Conclusion This study shows that xylan degradation by B. xylanisolvens XB1AT is orchestrated by one PUL and one PUL remnant that are linked at the transcriptional level. Coupled to studies on other xylanolytic Bacteroides species, our data emphasize the importance of one peculiar CBM4-containing GH10 endo-xylanase in xylan breakdown and that this modular enzyme may be used as a functional marker of xylan degradation in the human gut. Our results also suggest that B. xylanisolvens XB1AT has specialized in the degradation of xylans of low complexity. This functional feature may provide a niche to all xylanolytic bacteria harboring similar PULs. Further functional and ecological studies on fibrolytic Bacteroides species are needed to better understand their role in dietary fiber degradation and their impact on intestinal health. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2680-8) contains supplementary material, which is available to authorized users.
    Full-text available · Article · Dec 2016 · BMC Genomics
  • Source
    Laëtitia Théron · Delphine Centeno · Cécile Coudy-Gandilhon · [...] · Christophe Chambon
    Full-text available · Article · Oct 2016
  • Source
    F. Petitot · S. Frelon · C. Chambon · [...] · O. Guipaud
    [Show abstract] [Hide abstract] ABSTRACT: The civilian and military use of uranium results in an increased risk of human exposure. The toxicity of uranium results from both its chemical and radiological properties that vary with isotopic composition. Validated biomarkers of health effects associated with exposure to uranium are neither sensitive nor specific to uranium radiotoxicity and/or radiological effect. This study aimed at investigating if serum proteins could be useful as biomarkers of both uranium exposure and radiological effect. Male Sprague-Dawley rats were chronically exposed through drinking water to low levels (40 mg/L, corresponding to 1 mg of uranium per animal per day) of either 4% 235U-enriched uranium (EU) or 12% EU during 6 weeks. A proteomics approach based on two-dimensional electrophoresis (2D-DIGE) and mass spectrometry (MS) was used to establish protein expression profiles that could be relevant for discriminating between groups, and to identify some differentially expressed proteins following uranium ingestion. It demonstrated that the expressions of 174 protein spots over 1045 quantified spots were altered after uranium exposure (p < 0.05). Using both inferential and non-supervised multivariate statistics, we show sets of spots features that lead to a clear discrimination between controls and EU exposed groups on the one hand (21 spots), and between 4% EU and 12% EU on the other hand (7 spots), showing that investigation of the serum proteome may possibly be of relevance to address both uranium contamination and radiological effect. Finally, using bioinformatics tools, pathway analyses of differentially expressed MS-identified proteins find that acute phase, inflammatory and immune responses as well as oxidative stress are likely involved in the response to contamination, suggesting a physiological perturbation, but that does not necessarily lead to a toxic effect.
    Full-text available · Article · Jun 2016 · Toxicology Letters
  • Conference Paper · May 2016
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Hsp27—encoded by HspB1—is a member of the small heat shock proteins (sHsp, 12–43 kDa (kilodalton)) family. This protein is constitutively present in a wide variety of tissues and in many cell lines. The abundance of Hsp27 is highest in skeletal muscle, indicating a crucial role for muscle physiology. The protein identified as a beef tenderness biomarker was found at a crucial hub in a functional network involved in beef tenderness. The aim of this study was to analyze the proteins impacted by the targeted invalidation of HspB1 in the Tibialis anterior muscle of the mouse. Comparative proteomics using two-dimensional gel electrophoresis revealed 22 spots that were differentially abundant between HspB1-null mice and their controls that could be identified by mass spectrometry. Eighteen spots were more abundant in the muscle of the mutant mice, and four were less abundant. The proteins impacted by the absence of Hsp27 belonged mainly to calcium homeostasis (Srl and Calsq1), contraction (TnnT3), energy metabolism (Tpi1, Mdh1, PdhB, Ckm, Pygm, ApoA1) and the Hsp proteins family (HspA9). These data suggest a crucial role for these proteins in meat tenderization. The information gained by this study could also be helpful to predict the side effects of Hsp27 depletion in muscle development and pathologies linked to small Hsps.
    Full-text available · Article · May 2016 · Proteomics
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: In human, meat ensures the supply of proteins with high nutritional value and indispensable amino acids. The main goal of the present study was to compare the degradation of meat proteins under adult and elderly digestive conditions. Cooked meat was subjected to in vitro digestion in the dynamic multi-compartmental TIM (TNO gastroIntestinal Model) system. Digestibility and bioaccessibility were determined using nitrogen balance and digestion products were identified using mass spectrometry. The TIM model was adapted according to in vivo data to mimic the specific digestive conditions of elderly people. Meat proteins digestibility and bioaccessibility were around 96 and 60 % respectively and were not influenced by age condition (P > 0.05). As much as 800 peptides were identified in the duodenal and jejunal compartments issued from 50 meat proteins with a percentage of coverage varying from 13 to 69 %. Six proteins, mainly from the cytosol, were differentially hydrolyzed under adult and elderly conditions. Pyruvate kinase was the only protein clearly showing a delay in its degradation under elderly conditions. This study provides significant insights into the understanding of meat protein dynamic digestion. Such data will be helpful to design in vivo studies aiming to evaluate dietary strategies that can attenuate muscle mass loss and more generally maintain a better quality of life in the elderly population.
    Full-text available · Article · May 2016 · Food & Function
  • Article · May 2016
  • Poster · Apr 2016
  • Source
    File available · Poster · Apr 2016
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Escherichia coli is a commensal microorganism of the gastrointestinal tract of animals and humans and it is an excellent model organism for the study of antibiotic resistance mechanisms. The resistance transmission and other characteristics of bacteria are based on different types of gene transfer occurring throughout the bacterial evolution. One of which is horizontal gene transfer that allows us to understand the ability of bacteria to acquire new genes. One dimensional and two dimensional electrophoresis (2-DE) techniques were performed in order to identify and characterize the proteome of two E. coli strains: Electromax DH10B, a transformation-ready strain; and TF-Se20, the Electromax DH10B that contains the aac(6′)-Ib-cr4-harboring pMdT1 plasmid. After 2-DE and subsequent analysis by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), it was possible to identify 76 distinct proteins on the TF-Se20 strain, whereas 71 had a known function. From Electromax DH10B strain, 72 different proteins were identified of which 71 were associated with a biological process. The protein of interest, aminoglycoside N-(6′)-acetyltransferase type 1, was identified by MALDI-TOF MS. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique was performed to determine its sequence. Seventy six percent of the acetylase sequence was reconstructed only in the TF-Se20 strain, representing the single protein associated to antibiotic resistance.
    Full-text available · Article · Apr 2016 · Journal of proteomics
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Biological significance: This comparative proteomic study revealed a large number of differentially regulated proteins involved in antibiotic resistance which can be of great value to drug discovery, research and development programmes.
    Full-text available · Article · Apr 2016 · Journal of proteomics
  • Source
    T. Sayd · C. Chambon · V. Santé-Lhoutellier
    [Show abstract] [Hide abstract] ABSTRACT: We aimed to identify and quantify the peptides generated during in vitro digestion of cooked meat by liquid chromatography coupled with high resolution mass spectrometer. A total of 940 non-redundant peptides in the gastric compartment and 989 non-redundant peptides in the intestinal compartment were quantified and identified. Among the 71 different proteins identified, 43 meat proteins were found in the two digestive compartments, 20 proteins were specific to the gastric compartment and 8 proteins to the intestinal compartment. In terms of estimation, the proteins involved in muscle contraction and structure were preferentially enzymatically hydrolyzed in the small intestine. The effect of cooking provided different but less clear patterns of digestion. To the best of our knowledge, this constitutes the highest number of peptides identified in beef meat digests and provides a comprehensive database for meat protein digestion associated with cooking conditions. Such quantitative and qualitative differences may have important nutritional consequences.
    Full-text available · Article · Nov 2015 · Food Chemistry
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Wheat grain end-use value is determined by complex molecular interactions that occur during grain development, including those in the cell nucleus. However, our knowledge of how the nuclear proteome changes during grain development is limited. Here, we analyzed nuclear proteins of developing wheat grains collected during the cellularization, effective grain-filling, and maturation phases of development, respectively. Nuclear proteins were extracted and separated by two-dimensional gel electrophoresis. Image analysis revealed 371 and 299 reproducible spots in gels with first dimension separation along pH 4–7 and pH 6–11 isoelectric gradients, respectively. The relative abundance of 464 (67%) protein spots changed during grain development. Abundance profiles of these proteins clustered in six groups associated with the major phases and phase transitions of grain development. Using nano liquid chromatography-tandem mass spectrometry to analyse 387 variant and non-variant protein spots, 114 different proteins were identified that were classified into 16 functional classes. We noted that some proteins involved in the regulation of transcription, like HMG1/2-like protein and histone deacetylase HDAC2, were most abundant before the phase transition from cellularization to grain-filling, suggesting that major transcriptional changes occur during this key developmental phase. The maturation period was characterized by high relative abundance of proteins involved in ribosome biogenesis. Data are available via ProteomeXchange with identifier PXD002999.
    Full-text available · Article · Oct 2015 · Frontiers in Plant Science
  • Source
    Titouan Bonnot · Emmanuelle Bancel · Christophe Chambon · [...] · Pierre Martre
    [Show abstract] [Hide abstract] ABSTRACT: Wheat grain end-use value is determined by complex molecular interactions that occur during grain development, including those in the cell nucleus. However, our knowledge of how the nuclear proteome changes during grain development is limited. Here, we analyzed nuclear proteins of developing wheat grains collected during the cellularization, effective grain-filling, and maturation phases of development, respectively. Nuclear proteins were extracted and separated by two-dimensional gel electrophoresis. Image analysis revealed 371 and 299 reproducible spots in gels with first dimension separation along pH 4–7 and pH 6–11 isoelectric gradients, respectively. The relative abundance of 464 (67%) protein spots changed during grain development. Abundance profiles of these proteins clustered in six groups associated with the major phases and phase transitions of grain development. Using nano liquid chromatography-tandem mass spectrometry to analyse 387 variant and non-variant protein spots, 114 different proteins were identified that were classified into 16 functional classes. We noted that some proteins involved in the regulation of transcription, like HMG1/2-like protein and histone deacetylase HDAC2, were most abundant before the phase transition from cellularization to grain-filling, suggesting that major transcriptional changes occur during this key developmental phase. The maturation period was characterized by high relative abundance of proteins involved in ribosome biogenesis. Data are available via ProteomeXchange with identifier PXD002999.
    Full-text available · Article · Oct 2015 · Frontiers in Plant Science
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Escherichia coli é um microrganismo comensal do trato gastrointestinal de animais e humanos. Esta pode ser utilizada em diversos estudos biológicos e genéticos sobre a resistência aos antibióticos. A presença do plasmídeo pMdT1 é de grande relevância no estudo da resistência aos antibióticos, visto que contém um gene que codifica uma variante da proteína AAC(6’)-lb-cr e que esta, quando ativa, confere resistência à tobramicina e à canamicina, e diminui a suscetibilidade à ciprofloxacina e à norfloxacina. Foram utilizadas duas amostras, Escherichia coli Electromax DH10B, recetora do processo de transformação e Escherichia coli TF-Se20 sendo esta transformada, pois contém o plasmídeo pMdT1 que expressa o gene da acetilase. Após a extração proteica, a separação e quantificação das proteínas foi realizada mediante eletroforese monodimensional (SDS-PAGE) e posteriormente bidimensional (IEF x SDS-PAGE). A identificação das proteínas foi realizada através da técnica MALDI-TOF/MS. Para determinar a sequência da proteína de interesse, utilizou-se a técnica LC-MS/MS. As proteínas identificadas participam em diversos processos biológicos, designadamente nos processos de glicólise, oxidação-redução e biossíntese de proteínas. A proteína de interesse, aminoglycoside N(6’)-acetyltransferase type 1, foi identificada e posteriormente sequenciada concluindo-se, desta forma, que a proteómica pode ser usada para obter mais informação sobre os mecanismos de resistência.
    Full-text available · Conference Paper · Oct 2015
  • File available · Data · Aug 2015
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Ku70-dependent canonical nonhomologous end-joining (c-NHEJ) DNA repair system is fundamental to the genome maintenance and B-cell lineage. c-NHEJ is upregulated and error-prone in incurable forms of chronic lymphocytic leukemia which also displays telomere dysfunction, multiple chromosomal aberrations and the resistance to DNA damage-induced apoptosis. We identify in these cells a novel DNA damage inducible form of phospho-Ku70. In vitro in different cancer cell lines, Ku70 phosphorylation occurs in a heterodimer Ku70/Ku80 complex within minutes of genotoxic stress, necessitating its interaction with DNA damage-induced kinase pS2056-DNA-PKcs and/or pS1981-ATM. The mutagenic effects of phospho-Ku70 are documented by a defective S/G2 checkpoint, accelerated disappearance of γ-H2AX foci and kinetics of DNA repair resulting in an increased level of genotoxic stress-induced chromosomal aberrations. Together, these data unveil an involvement of phospho-Ku70 in fast but inaccurate DNA repair; a new paradigm linked to both the deregulation of c-NHEJ and the resistance of malignant cells.
    Full-text available · Article · Aug 2015 · Oncotarget
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: For many years Staphylococcus aureus has been recognized as an important human pathogen. In this study, the surfacome and exoproteome of a clinical sample of MRSA was analyzed. The C2355 strain, previously typed as ST398 and spa-t011 and showing a phenotype of multiresistance to antibiotics, has several resistance genes. Using shotgun proteomics and bioinformatics tools, 236 proteins were identified in the surfaceome and 99 proteins in the exoproteome. Although many of these proteins are related to basic cell functions, some are related to virulence and pathogenicity like catalase and isdA, main actors in S. aureus infection, and others are related to antibiotic action or eventually resistance like penicillin binding protein, a cell-wall protein. Studying the proteomes of different subcellular compartments should improve our understanding of this pathogen, a microorganism with several mechanisms of resistance and pathogenicity, and provide valuable data for bioinformatics databases.
    Full-text available · Article · Jul 2015
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The aleurone layer (AL) is the grain peripheral tissue; it is rich in micronutrients, vitamins, antioxidants, and essential amino acids. This highly nutritive part of the grain has been less studied partly because its isolation is so laborious. In the present study, the ALs of Triticum aestivum (variety Récital) were separated manually at 15 stages of grain development. A total of 327 proteins were identified using 2-DE LC-MS/MS. They were classified in six main groups and 26 sub-groups according to their biochemical function. Proteomic analysis revealed seven different profiles distributed among three main development stages: (i) early AL development, with proteins involved in intense metabolic activities in the growth and development of the cell wall compounds; (ii) the intermediate stage, characterized by oxidative stress and defense proteins (65%) linked with loss of water in peripheral layers during grain filling; and (iii) AL maturation, involving the production of amino acids and the control of reactive oxidative species to enable the accumulation and maturation of globulins within the AL. The present study provides the first insights into developing proteome in the AL. We describe the numerous AL enzymes involved in the accumulation of storage protein and in the protection of the endosperm over time.
    Full-text available · Article · Apr 2015 · Journal of proteomics