Yan-Ni Liu

Lanzhou University, Kao-lan-hsien, Gansu Sheng, China

Are you Yan-Ni Liu?

Claim your profile

Publications (5)22.3 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The enzymatic activity of protein tyrosine kinase Src is subjected to the regulation by C-terminal Src kinase (CSK) and protein tyrosine phosphatases (PTPs). Aberrant Src activation in the spinal cord dorsal horn is pivotal for the induction and development of nociceptive behavioral sensitization. Here we found that paxillin, one of the well-characterized cell adhesion components involved in cell migration and survival, integrated CSK and PTPs signaling to regulate Src-dependent nociceptive plasticity. Paxillin localized at excitatory glutamatergic synapses in the spinal dorsal horn of mice, and the phosphorylation of Tyr118 on paxillin was necessary to associate with and target CSK at synapses. Following peripheral tissue injury, the enhanced neuronal activity stimulated N-methyl-D-aspartate (NMDA) subtype glutamate receptors, which initiated PTPs signaling to catalyze Tyr118 dephosphorylation. The reduced Tyr118 phosphorylation disrupted paxillin interaction with CSK, leading to the dispersal of CSK out of synapses. With the loss of CSK-mediated inhibition, Src activity was persistently increased. The active Src potentiated the synaptic transmission specifically mediated by GluN2B subunit-containing NMDA receptors. The active Src also facilitated the induction of long-term potentiation (LTP) of C fiber-evoked field potentials and exaggerated painful responses. In Complete Freund's Adjuvant (CFA)-injected mice, viral expression of phosphomimicking paxillin mutant to resume CSK synaptic localization repressed Src hyperactivity. Meanwhile, this phosphomimicking paxillin mutant blunted NMDA receptor-mediated synaptic transmission and alleviated chronic inflammatory pain. These data showed that PTPs-mediated dephosphorylation of paxillin at Tyr118 was involved in the modification of nociceptive plasticity through CSK/Src signaling.
    No preview · Article · Nov 2015 · Pain
  • Zhan-Wei Suo · Xian Yang · Lu Li · Yan-Ni Liu · Lei Shi · Xiao-Dong Hu
    [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine phosphorylation of N-methyl-D-aspartate (NMDA) subtype glutamate receptors by Src-family protein tyrosine kinases (SFKs) plays a critical role in spinal sensitization. Besides SFKs, the tyrosine phosphorylation levels of proteins are also determined by protein tyrosine phosphatases (PTPs). However, whether PTPs are involved in spinal nociceptive processing is largely unknown. The present study found that intrathecal application of broad-spectrum PTPs inhibitors orthovanadate or Bpv (phen) generated little effects on the paw withdrawal thresholds of intact rats to Von Frey filament stimuli. Although the basal nociceptive responses didn't require the involvement of PTPs, the mechanical allodynia evoked by intrathecal injection of NMDA was greatly attenuated by orthovanadate and Bpv (phen), suggesting that PTPs activity, once stimulated by NMDA receptors, became essential for spinal sensitization. Biochemical analysis demonstrated that PTPs functioned to activate SFKs member Src and promote Src interaction with NR2B subunit-containing NMDA receptors (NR2B receptors). As a result, PTPs inhibition largely suppressed Src-mediated NR2B phosphorylation at Tyr1472 and reduced the synaptic concentration of NR2B receptors in spinal dorsal horn of NMDA-treated rats. Importantly, intraplantar injection of Complete Freund's Adjuvant (CFA) naturally activated spinal PTPs to initiate Src signaling, because PTPs inhibition significantly repressed Src activity, reduced Src phosphorylation of NR2B, decreased NR2B synaptic accumulation and eventually ameliorated inflammatory pain. These data indicated an important role played by spinal PTPs in inducing Src-dependent NR2B receptor hyperfunction and suggested that PTPs inhibition might represent an effective strategy for the treatment of inflammatory pain.
    No preview · Article · Jan 2013 · Neuropharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Calcium influx via N-methyl-D-aspartate (NMDA)-subtype glutamate receptors (NMDARs) regulates the intracellular trafficking of NMDARs, leading to long-lasting modification of NMDAR-mediated synaptic transmission that is involved in development, learning, and synaptic plasticity. The present study investigated the contribution of such NMDAR-dependent synaptic trafficking in spinal dorsal horn to the induction of pain hypersensitivity. Our data showed that direct activation of NMDARs by intrathecal NMDA application elicited pronounced mechanical allodynia in intact mice, which was concurrent with a specific increase in the abundance of NMDAR subunits NR1 and NR2B at the postsynaptic density (PSD)-enriched fraction. Selective inhibition of NR2B-containing NMDARs (NR2BR) by ifenprodil dose dependently attenuated the mechanical allodynia in NMDA-injected mice, suggesting the importance of NR2BR synaptic accumulation in NMDA-induced pain sensitization. The NR2BR redistribution at synapses after NMDA challenge was associated with a significant increase in NR2B phosphorylation at Tyr1472, a catalytic site by Src family protein tyrosine kinases (SFKs) that has been shown to prevent NR2B endocytosis. Intrathecal injection of a specific SFKs inhibitor, PP2, to block NR2B tyrosine phosphorylation eliminated NMDA-induced NR2BR synaptic expression and also attenuated the mechanical allodynia. These data suggested that activation of spinal NMDARs was able to accumulate NR2BR at synapses via SFK signaling, which might exaggerate NMDAR-dependent nociceptive transmission and contribute to NMDA-induced nociceptive behavioral hyperresponsiveness.
    No preview · Article · Nov 2011 · Journal of Neuroscience Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intense noxious stimuli impair GABAergic inhibition in spinal dorsal horn, which has been proposed as a critical contributor to pathological pain. However, how the reduced inhibition exacerbates the transfer of nociceptive information at excitatory glutamatergic synapses is still poorly understood. The present study demonstrated that one of the striking consequences of GABAergic disinhibition was to enhance the function of N-methyl-D-aspartate subtype glutamate receptors (NMDARs), a well-characterized player in central sensitization. We found that intrathecal application of bicuculline, a GABA(A) receptor antagonist, to remove the inhibition readily elicited mechanical allodynia in naive mice, which could be dose-dependently attenuated by NMDARs antagonist D-APV. Biochemical analysis demonstrated that bicuculline did not affect the total expression levels of the obligatory NMDARs subunit NR1 and the regulatory subunit NR2A and NR2B. However, bicuculline promoted NR1 phosphorylation at Serine 897 (NR1-S897) by cAMP-dependent protein kinase (PKA). This PKA-mediated phosphorylation incorporated NR1 along with NR2B into synapses. When PKA inhibitor H-89 was intrathecally applied, it totally eliminated bicuculline-induced NMDARs phosphorylation, synaptic redistribution as well as pain sensitization. Importantly, the reduced inhibition also operated to enhance NMDARs functions after peripheral inflammation, because spinal injection of diazepam to rescue the inhibition in inflamed mice greatly depressed PKA phosphorylation of NR1-S897, reduced the synaptic concentration of NR1/NR2B and meanwhile, alleviated the inflammatory pain. These data suggested that removal of GABAergic inhibition allowed for PKA-mediated NMDARs phosphorylation and synaptic accumulation, thus exaggerating NMDARs-dependent nociceptive transmission and behavioral sensitization.
    No preview · Article · May 2011 · Neuropharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: J. Neurochem. (2011) 116, 93–104. Selective inhibition of GluN2B-containing NMDA receptor (GluN2BR) in spinal dorsal horn effectively alleviates inflammatory pain, suggesting the up-regulation of GluN2BR function involved in central sensitization. Previous studies have demonstrated that the increase in GluN2BR synaptic expression serves as a key step to enhance GluN2BR function after intradermal injection of Complete Freund’s Adjuvant (CFA). Here, we showed that cAMP-dependent protein kinase (PKA) played an important role in redistributing GluN2BR at synapses, because inhibition of PKA activity impaired GluN2BR accumulation at post-synaptic density (PSD)-enriched fraction in CFA-injected mice, and direct stimulation of PKA in naïve mice mimicked the effect of CFA by recruiting GluN2BR at PSD fraction to evoke pain sensitization. Analysis of PKA-initiated signalings unraveled that PKA was able to activate Src-family protein tyrosine kinases member Fyn, possibly by disrupting Fyn association with its inhibitory partner striatal-enriched protein tyrosine phosphatase 61. The active Fyn then promoted GluN2B phosphorylation at Tyr1472, a molecular event known to prevent GluN2BR endocytosis. As a result, pharmacological or genetic manipulation of Fyn activity greatly depressed GluN2BR accumulation at PSD-enriched fraction and ameliorated mechanical allodynia induced by PKA. Our data thus elucidated a critical role of PKA/Fyn/GluN2B signaling in triggering GluN2BR hyperfunction and pain hypersensitivity.
    Preview · Article · Nov 2010 · Journal of Neurochemistry

Publication Stats

58 Citations
22.30 Total Impact Points


  • 2010-2013
    • Lanzhou University
      • School of Pharmacy
      Kao-lan-hsien, Gansu Sheng, China