Winfried Weissenhorn

Université Grenoble Alpes, Grenoble, Rhône-Alpes, France

Are you Winfried Weissenhorn?

Claim your profile

Publications (104)577.85 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.
    Full-text · Article · Dec 2015 · Nature Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.
    Full-text · Article · Nov 2015 · Cell Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmacytoid dendritic cells (pDCs) constitute a major source of type-I interferon (IFN-I) production during acute HIV infection. Their activation results primarily from TLR7-mediated sensing of HIV-infected cells. However, the interactions between HIV-infected T cells and pDCs that modulate this sensing process remain poorly understood. BST2/Tetherin is a restriction factor that inhibits HIV release by cross-linking virions onto infected cell surface. BST2 was also shown to engage the ILT7 pDC-specific inhibitory receptor and repress TLR7/9-mediated IFN-I production by activated pDCs. Here, we show that Vpu, the HIV-1 antagonist of BST2, suppresses TLR7-mediated IFN-I production by pDC through a mechanism that relies on the interaction of BST2 on HIV-producing cells with ILT7. Even though Vpu downregulates surface BST2 as a mean to counteract the restriction on HIV-1 release, we also find that the viral protein re-locates remaining BST2 molecules outside viral assembly sites where they are free to bind and activate ILT7 upon cell-to-cell contact. This study shows that through a targeted regulation of surface BST2, Vpu promotes HIV-1 release and limits pDC antiviral responses upon sensing of infected cells. This mechanism of innate immune evasion is likely to be important for an efficient early viral dissemination during acute infection.
    Full-text · Article · Jul 2015 · PLoS Pathogens
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressed in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6-8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8-15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. Copyright © 2015. Published by Elsevier Inc.
    Full-text · Article · Feb 2015 · Biochemical and Biophysical Research Communications
  • M. Hock · W. Weissenhorn
    [Show abstract] [Hide abstract]
    ABSTRACT: Entry of enveloped viruses is mediated by viral glycoproteins that catalyze fusion of viral and cellular membranes. These viral glycoproteins need to be activated which leads to extensive conformational changes that trigger the insertion or attachment of a fusion peptide in or to cellular target membranes thus bridging two bilayers. Further refolding into a hairpin-like structure pulls viral and cellular membranes into close apposition, a process that leads to lipid bilayer fusion. Although viral fusion proteins belong to three different classes based on their structural organization, they follow similar structural principles to achieve fusion.
    No preview · Chapter · Dec 2014
  • Jens Radzimanowski · Gregory Effantin · Winfried Weissenhorn
    [Show abstract] [Hide abstract]
    ABSTRACT: Filoviruses are the causative agents of a severe and often fatal hemorrhagic fever with repeated outbreaks in Africa. They are negative sense single stranded enveloped viruses that can cross species barriers from its natural host bats to primates including humans. The small size of the genome poses limits to viral adaption, which may be partially overcome by conformational plasticity. Here we review the different conformational states of the Ebola virus matrix protein VP40 that range from monomers, to dimers, hexamers and RNA-bound octamers. This conformational plasticity that is required for the viral life cycle poses a unique opportunity for development of VP40 specific drugs. Furthermore, we compare the structure to homologous matrix protein structures from Paramyxoviruses and bornaviruses and we predict that they do not only share the fold but also the conformational flexibility of Ebola virus VP40.
    No preview · Article · Nov 2014 · Protein Science
  • Source
    Maxim V. Petoukhov · Winfried Weissenhorn · Dmitri I. Svergun
    [Show abstract] [Hide abstract]
    ABSTRACT: Endophilin-A1 belongs to the family of BAR domain containing proteins that catalyze membrane remodeling processes via sensing, inducing and stabilizing membrane curvature. We show that the BAR domain of endophilin-A1 binds arachidonic acid and molds its coenzyme A (CoA) activated form, arachidonyl-CoA into a defined structure. We studied low resolution structures of endophilin-A1-BAR and its complex with arachidonyl-CoA in solution using synchrotron small-angle X-ray scattering (SAXS). The free endophilin-A1-BAR domain is shown to be dimeric at lower concentrations but builds tetramers and higher order complexes with increasing concentrations. Extensive titration SAXS studies revealed that the BAR domain produces a homogenous complex with the lipid micelles. The structural model of the complexes revealed two arachidonyl-CoA micelles bound to the distal arms of an endophilin-A1-BAR dimer. Intriguingly, the radius of the bound micelles significantly decreases compared to that of the free micelles, and this structural result may provide hints on the potential biological relevance of the endophilin-A1-BAR interaction with arachidonyl CoA.
    Preview · Article · Oct 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background One unique feature of the foamy virus (FV) capsid protein Gag is the absence of Cys-His motifs, which in orthoretroviruses are irreplaceable for multitude functions including viral RNA genome recognition and packaging. Instead, FV Gag contains glycine-arginine-rich (GR) sequences at its C-terminus. In case of prototype FV (PFV) these are historically grouped in three boxes, which have been shown to play essential functions in genome reverse transcription, virion infectivity and particle morphogenesis. Additional functions for RNA packaging and Pol encapsidation were suggested, but have not been conclusively addressed. Results Here we show that released wild type PFV particles, like orthoretroviruses, contain various cellular RNAs in addition to viral genome. Unlike orthoretroviruses, the content of selected cellular RNAs in capsids of PFV vector particles was not altered by viral genome encapsidation. Deletion of individual GR boxes had only minor negative effects (2 to 4-fold) on viral and cellular RNA encapsidation over a wide range of cellular Gag to viral genome ratios examined. Only the concurrent deletion of all three PFV Gag GR boxes, or the substitution of multiple arginine residues residing in the C-terminal GR box region by alanine, abolished both viral and cellular RNA encapsidation (>50 to >3,000-fold reduced), independent of the viral production system used. Consequently, those mutants also lacked detectable amounts of encapsidated Pol and were non-infectious. In contrast, particle release was reduced to a much lower extent (3 to 20-fold). Conclusions Taken together, our data provides the first identification of a full-length PFV Gag mutant devoid in genome packaging and the first report of cellular RNA encapsidation into PFV particles. Our results suggest that the cooperative action of C-terminal clustered positively charged residues, present in all FV Gag proteins, is the main viral protein determinant for viral and cellular RNA encapsidation. The viral genome independent efficiency of cellular RNA encapsidation suggests differential packaging mechanisms for both types of RNAs. Finally, this study indicates that analogous to orthoretroviruses, Gag – nucleic acid interactions are required for FV capsid assembly and efficient particle release. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0087-7) contains supplementary material, which is available to authorized users.
    Full-text · Article · Oct 2014 · Retrovirology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The membrane-proximal external region (MPER) of the human immunodeficiency virus, type 1 (HIV-1) envelope glycoprotein subunit gp41 is targeted by potent broadly neutralizing antibodies 2F5, 4E10, and 10E8. These antibodies recognize linear epitopes and have been suggested to target the fusion intermediate conformation of gp41 that bridges viral and cellular membranes. Anti-MPER antibodies exert different degrees of membrane interaction, which is considered to be the limiting factor for the generation of such antibodies by immunization. Here we characterize a fusion intermediate conformation of gp41 (gp41int-Cys) and show that it folds into an elongated ∼12-nm-long extended structure based on small angle x-ray scattering data. Gp41int-Cys was covalently linked to liposomes via its C-terminal cysteine and used as immunogen. The gp41int-Cys proteoliposomes were administered alone or in prime-boost regimen with trimeric envelope gp140CA018 in guinea pigs and elicited high anti-gp41 IgG titers. The sera interacted with a peptide spanning the MPER region, demonstrated competition with broadly neutralizing antibodies 2F5 and 4E10, and exerted modest lipid binding, indicating the presence of MPER-specific antibodies. Although the neutralization potency generated solely by gp140CA018 was higher than that induced by gp41int-Cys, the majority of animals immunized with gp41int-Cys proteoliposomes induced modest breadth and potency in neutralizing tier 1 pseudoviruses and replication-competent simian/human immunodeficiency viruses in the TZM-bl assay as well as responses against tier 2 HIV-1 in the A3R5 neutralization assay. Our data thus demonstrate that liposomal gp41 MPER formulation can induce neutralization activity, and the strategy serves to improve breadth and potency of such antibodies by improved vaccination protocols.
    Full-text · Article · Aug 2014 · Journal of Biological Chemistry
  • Source
    Winfried Weissenhorn · Marie-Odile Fauvarque
    [Show abstract] [Hide abstract]
    ABSTRACT: Atg8 family proteins and Atg13 are important regulators of autophagy. In this issue of Structure, Suzuki and colleagues describe crystal structures of light chain 3 (LC3; Atg8) in complex with the Atg13 LC3 interacting region (LIR) motif and identify a subtle switch of side chain conformation regulating the LC3-LIR interaction and autophagosome formation in vivo.
    Preview · Article · Jan 2014 · Structure
  • Source
    Winfried Weissenhorn

    Preview · Article · Sep 2013 · Retrovirology
  • Winfried Weissenhorn · Emilie Poudevigne · Gregory Effantin · Patricia Bassereau
    [Show abstract] [Hide abstract]
    ABSTRACT: Enveloped viruses acquire their membrane from the host cell and accordingly need to separate their envelope from cellular membranes via membrane fission. Although some of the enveloped viruses recruit the endosomal sorting complex required for transport (ESCRT) to catalyze the final fission reaction, many enveloped viruses seem to bud in an ESCRT-independent manner. Here we describe the principles that govern membrane fission reactions in general and review progress in the understanding of ESCRT-mediated membrane fission. We relate ESCRT function to budding of single stranded RNA viruses and discuss alternative ways to mediate membrane fission that may govern ESCRT-independent budding.
    No preview · Article · Apr 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10.
    No preview · Article · Mar 2013 · PLoS Pathogens
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ϕRSL1 jumbo phage belongs to a new class of viruses within the Myoviridae family. Here, we report its three-dimensional structure determined by electron cryo microscopy. The icosahedral capsid, the tail helical portion, and the complete tail appendage were reconstructed separately to resolutions of 9 Å, 9 Å, and 28 Å, respectively. The head is rather complex and formed by at least five different proteins, whereas the major capsid proteins resemble those from HK97, despite low sequence conservation. The helical tail structure demonstrates its close relationship to T4 sheath proteins and provides evidence for an evolutionary link of the inner tail tube to the bacterial type VI secretion apparatus. Long fibers extend from the collar region, and their length is consistent with reaching the host cell surface upon tail contraction. Our structural analyses indicate that ϕRSL1 is an unusual member of the Myoviridae that employs conserved protein machines related to different phages and bacteria.
    Full-text · Article · Feb 2013 · Structure
  • [Show abstract] [Hide abstract]
    ABSTRACT: The endosomal sorting complex required for transport-III (ESCRT-III) proteins are essential for budding of some enveloped viruses, the formation of intraluminal vesicles at the endosome and for the abscission step of cytokinesis. ESCRT-III proteins form polymers that constrict membrane tubes, leading to fission. We have used electron cryomicroscopy (cryo-EM) to determine the molecular organization of pleiomorphic ESCRT-III CHMP2A-CHMP3 polymers. The three-dimensional reconstruction at 22 Å resolution reveals a helical organization of filaments of CHMP molecules organized in a head-to-tail fashion. Protease susceptibility experiments indicate that polymerization is achieved via conformational changes that increase the protomer stability. Combinatorial siRNA knockdown experiments indicate that CHMP3 contributes synergistically to HIV-1 budding, and the CHMP3 contribution is ∼10-fold more pronounced in concert with CHMP2A than with CHMP2B. This is consistent with SPR affinity measurements that suggest sequential CHMP4B-CHMP3-CHMP2A recruitment while showing that both CHMP2A and CHMP2B interact with CHMP4B, in agreement with their redundant functions in HIV-1 budding. Our data thus indicate that the CHMP2A-CHMP3 polymer observed in vitro contributes to HIV-1 budding by assembling on CHMP4B polymers.
    No preview · Article · Oct 2012 · Cellular Microbiology
  • Source

    Full-text · Article · Sep 2012 · Retrovirology
  • [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1 employs its structural proteins to orchestrate assembly and budding at the plasma membrane of host cells, which depends on numerous cellular factors. Although cells evolved interferon inducible restriction factors such as tetherin that act as a first line of defense, enveloped viruses, including HIV-1, developed countermeasures in the form of tetherin antagonists such as Vpu that decrease the effect of tetherin and permits normal viral replication in vivo. Here we review recent advances in the understanding of the dynamic structural properties of tetherin that provide the basis to physically retain HIV-1 by bridging plasma and virion membranes after completion of budding.
    No preview · Article · Apr 2012 · Current HIV research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endosomal sorting complexes required for transport (ESCRTs) regulate diverse processes ranging from receptor sorting at endosomes to distinct steps in cell division and budding of some enveloped viruses. Common to all processes is the membrane recruitment of ESCRT-III that leads to membrane fission. Here, we show that CC2D1A is a novel regulator of ESCRT-III CHMP4B function. We demonstrate that CHMP4B interacts directly with CC2D1A and CC2D1B with nanomolar affinity by forming a 1:1 complex. Deletion mapping revealed a minimal CC2D1A-CHMP4B binding construct, which includes a short linear sequence within the third DM14 domain of CC2D1A. The CC2D1A binding site on CHMP4B was mapped to the N-terminal helical hairpin. Based on a crystal structure of the CHMP4B helical hairpin, two surface patches were identified that interfere with CC2D1A interaction as determined by surface plasmon resonance. Introducing these mutations into a C-terminal truncation of CHMP4B that exerts a potent dominant negative effect on human immunodeficiency virus type 1 budding revealed that one of the mutants lost this effect completely. This suggests that the identified CC2D1A binding surface might be required for CHMP4B polymerization, which is consistent with the finding that CC2D1A binding to CHMP4B prevents CHMP4B polymerization in vitro. Thus, CC2D1A might act as a negative regulator of CHMP4B function.
    Full-text · Article · Mar 2012 · Journal of Molecular Biology
  • Nicolas Aschman · Winfried Weissenhorn · Patricia Renesto
    [Show abstract] [Hide abstract]
    ABSTRACT: Tetherin is an unusual surface glycoprotein that employs an N-terminal and a C-terminal region to anchor the protein into membranes. Structural analyses revealed an elongated structure for the ectodomain that is probably oriented parallel to cellular membranes. Expression of tetherin can be induced by interferon in selected cell types, which leads to the restriction of HIV-1 replication in the absence of the viral antagonist Vpu. This review focuses on recent progress on the understanding of the molecular mechanisms of tetherin function during HIV and other enveloped virus budding processes. We discuss the role of diverse viral antagonists in tetherin down regulation and place the structural information on the ectodomain into the context of tetherin's ability to physically link virions such as HIV-1 to the plasma membrane after completion of budding.
    No preview · Article · Jan 2012 · Virologie
  • Nicolas Aschman · Winfried Weissenhorn · Patricia Renesto

    No preview · Article · Jan 2012 · Virologie

Publication Stats

6k Citations
577.85 Total Impact Points

Institutions

  • 2015
    • Université Grenoble Alpes
      Grenoble, Rhône-Alpes, France
  • 2011-2015
    • University of Grenoble
      Grenoble, Rhône-Alpes, France
  • 2014
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
  • 2008-2013
    • Unit of Virus Host Cell Interactions
      Grenoble, Rhône-Alpes, France
  • 2007-2013
    • University Joseph Fourier - Grenoble 1
      Grenoble, Rhône-Alpes, France
  • 2000-2006
    • European Molecular Biology Laboratory
      Heidelburg, Baden-Württemberg, Germany
  • 2003
    • Philipps-Universität Marburg
      • Institut für Virologie
      Marburg, Hesse, Germany
  • 1996-2001
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 1997-1999
    • Boston Children's Hospital
      Boston, Massachusetts, United States