Ulrike Kusebauch

Institute for Systems Biology, Seattle, Washington, United States

Are you Ulrike Kusebauch?

Claim your profile

Publications (24)173.56 Total impact

  • Source
    Dataset: Maixner-SM

    Full-text · Dataset · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Five thousand years ago in the European Alps, a man was shot by an arrow, then clubbed to death. His body was subsequently mummified by ice until glacier retreat exhumed him in 1991. Subsequently, this ancient corpse has provided a trove of intriguing information about copper-age Europeans. Now, Maixner et al. have identified the human pathogen Helicobacter pylori within the mummy's stomach contents. The strain the “Iceman” hosted appears to most closely resemble pathogenic Asian strains found today in Central and Southern Asia.Science, this issue p. 162The stomach bacterium Helicobacter pylori is one of the most prevalent human pathogens. It has dispersed globally with its human host, resulting in a distinct phylogeographic pattern that can be used to reconstruct both recent and ancient human migrations. The extant European population of H. pylori is known to be a hybrid between Asian and African bacteria, but there exist different hypotheses about when and where the hybridization took place, reflecting the complex demographic history of Europeans. Here, we present a 5300-year-old H. pylori genome from a European Copper Age glacier mummy. The “Iceman” H. pylori is a nearly pure representative of the bacterial population of Asian origin that existed in Europe before hybridization, suggesting that the African population arrived in Europe within the past few thousand years.
    Full-text · Article · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Post-translational modifications of proteins play an important role in biology. For example, phosphorylation is a key component in signal transduction in all three domains of life, and histones can be modified in such a variety of ways that a histone code for gene regulation has been proposed. Shotgun proteomics is commonly used to identify post-translational modifications as well as chemical modifications from sample processing. However, it favors the detection of abundant peptides over the repertoire presented, and the data analysis usually requires advance specification of modification masses and target amino acids, their number constrained by available computational resources. Recent advances in data independent acquisition mass spectrometry technologies such as SWATH MS enable the recording of the complete peptide contents of samples, including peptides with modifications. Here we present a novel approach that applies the power of SWATH MS analysis to the automated pursuit of modified peptides. With the new SWATHProphetPTM functionality added to the open source SWATHProphet software, precursor ions consistent with a modification are identified along with the mass and localization of the modification in the peptide sequence, in a sensitive and unbiased manner without the need to anticipate the modifications in advance. Using this method, we demonstrate the detection of a wide assortment of modified peptides, many unanticipated, in samples containing unpurified synthetic peptides and human urine, as well as in phospho-enriched human tissue culture cell samples.
    Preview · Article · Dec 2015 · Molecular & Cellular Proteomics
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas phase ions according to their characteristic dependence of ion mobility on electric field strength. FAIMS can be implemented as a means of automated gas-phase fractionation in liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments. We modified a commercially-available cylindrical FAIMS device by enlarging the inner electrode, thereby narrowing the gap and increasing the effective field strength. This modification provided a nearly four-fold increase in FAIMS peak capacity over the optimally configured unmodified device. We employed the modified FAIMS device for in-line fractionation in a proteomic analysis of a complex sample and observed major increases in protein discovery. NanoLC-FAIMS-MS/MS of an unfractionated yeast tryptic digest using the modified FAIMS device identified 53% more proteins than were identified using an unmodified FAIMS device, and 98% more proteins than were identified with unaided nanoLC-MS/MS. We describe here the development of a nanoLC-FAIMS-MS/MS protocol that provides automated gas-phase fractionation for proteomic analysis of complex protein digests. We compare this protocol against pre-fractionation of peptides with isoelectric focusing and demonstrate that FAIMS fractionation yields comparable protein recovery while significantly reducing the amount of sample required and eliminating the need for additional sample handling.
    No preview · Article · Nov 2015 · Analytical Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: CKD is the gradual, asymptomatic loss of kidney function, but current tests only identify CKD when significant loss has already happened. Several potential biomarkers of CKD have been reported, but none have been approved for preclinical or clinical use. Using RNA sequencing in a mouse model of folic acid-induced nephropathy, we identified ten genes that track kidney fibrosis development, the common pathologic finding in patients with CKD. The gene expression of all ten candidates was confirmed to be significantly higher (approximately ten- to 150-fold) in three well established, mechanistically distinct mouse models of kidney fibrosis than in models of nonfibrotic AKI. Protein expression of these genes was also high in the folic acid model and in patients with biopsy-proven kidney fibrosis. mRNA expression of the ten genes increased with increasing severity of kidney fibrosis, decreased in response to therapeutic intervention, and increased only modestly (approximately two- to five-fold) with liver fibrosis in mice and humans, demonstrating specificity for kidney fibrosis. Using targeted selected reaction monitoring mass spectrometry, we detected three of the ten candidates in human urine: cadherin 11 (CDH11), macrophage mannose receptor C1 (MRC1), and phospholipid transfer protein (PLTP). Furthermore, urinary levels of each of these three proteins distinguished patients with CKD (n=53) from healthy individuals (n=53; P<0.05). In summary, we report the identification of urinary CDH11, MRC1, and PLTP as novel noninvasive biomarkers of CKD.
    No preview · Article · Oct 2015 · Journal of the American Society of Nephrology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Human PeptideAtlas is a compendium of the highest quality peptide identifications from over 1000 shotgun mass spectrometry proteomics experiments collected from many different labs, all reanalyzed through a uniform processing pipeline. The latest 2015-03 build contains substantially more input data than past releases, is mapped to a recent version of our merged reference proteome, and uses improved informatics processing and the development of the AtlasProphet to provide the highest quality results. Within the set of ~20,000 neXtProt primary entries, 14,070 (70%) are confidently detected in the latest build, 5% are ambiguous, 9% are redundant, leaving the total percentage of proteins for which there are no mapping detections at just 16% (3166), all derived from over 133 million peptide-spectrum matches identifying more than 1 million distinct peptides using AtlasProphet to characterize and classify the protein matches. Improved handling for detection and presentation of single amino-acid variants (SAAVs) reveals the detection of 5,326 uniquely mapping SAAVs across 2,794 proteins. With such a large amount of data, the control of false positives is a challenge. We present the methodology and results for maintaining rigorous quality, along with a discussion of the implications of the remaining sources of errors in the build. We check our uncertainty estimates against a set of olfactory receptor proteins not expected to be present in the set. We show how the use of synthetic reference spectra can provide confirmatory evidence for claims of detection of proteins with weak evidence.
    No preview · Article · Jul 2015 · Journal of Proteome Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: For many years, basic and clinical researchers have taken advantage of the analytical sensitivity and specificity afforded by mass spectrometry in the measurement of proteins. Clinical laboratories are now beginning to deploy these work flows as well. For assays that use proteolysis to generate peptides for protein quantification and characterization, synthetic stable isotopelabeled internal standard peptides are of central importance. No general recommendations are currently available surrounding the use of peptides in protein mass spectrometric assays. CONTENT: The Clinical Proteomic Tumor Analysis Consortium of the National Cancer Institute has collaborated with clinical laboratorians, peptide manufacturers, metrologists, representatives of the pharmaceutical industry, and other professionals to develop a consensus set of recommendations for peptide procurement, characterization, storage, and handling, as well as approaches to the interpretation of the data generated by mass spectrometric protein assays. Additionally, the importance of carefully characterized reference materials-in particular, peptide standards for the improved concordance of amino acid analysis methods across the industry-is highlighted. The alignment of practices around the use of peptides and the transparency of sample preparation protocols should allow for the harmonization of peptide and protein quantification in research and clinical care.
    Full-text · Article · Jan 2015 · Clinical Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus aureus is a human pathogen that can cause a wide range of diseases. Although formerly regarded as extracellular pathogen, it has been shown that S. aureus can also be internalized by host cells and persist within these cells. In the present study, we comparatively analyzed survival and physiological adaptation of S. aureus HG001 after internalization by two human lung epithelial cell lines (S9 and A549), and human embryonic kidney cells (HEK 293). Combining enrichment of bacteria from host-pathogen assays by cell sorting and quantitation of the pathogen´s proteome by mass spectrometry we characterized S. aureus adaptation during the initial phase between 2.5 h and 6.5 h post-infection. Starting with about 2x106 bacteria, roughly 1,450 S. aureus proteins, including virulence factors and metabolic enzymes were identified by spectral comparison and classical database searches. Most of the bacterial adaptation reactions, such as decreases in levels of ribosomal proteins and metabolic enzymes or increases in amounts of proteins involved in arginine and lysine biosynthesis, coding for terminal oxidases and stress responsive genes or activation of the sigma factor SigB were observed after internalization into any of the three cell lines studied. However, differences were noted in central carbon metabolism including regulation of fermentation and threonine degradation. Since these differences coincided with different intracellular growth behavior, complementary profiling of the metabolome of the different non-infected host cell types was performed. This revealed similar levels of intracellular glucose but host cell specific differences in the amounts of amino acids such as glycine, threonine or glutamate. With this comparative study we provide an impression of the common and specific features of the adaptation of S. aureus HG001 to specific host cell environments as a starting point for follow-up studies with different strain isolates and regulatory mutants.
    Full-text · Article · Aug 2014 · Frontiers in Microbiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM) is a highly invasive and aggressive brain tumor with an invariably poor prognosis. The overexpression of epidermal growth factor receptor (EGFR) is a primary influencer of invasion and proliferation in tumor cells and the constitutively active EGFRvIII mutant, found in 30-65% of GBMs, confers more aggressive invasion. To better understand how EGFR contributes to tumor aggressiveness, we investigated the effect of EGFR on the secreted levels of 65 rationally selected proteins involved in invasion. We employed selected reaction monitoring (SRM) targeted mass spectrometry using stable isotope labeled internal peptide standards to quantity proteins in the secretome from five GBM (U87) isogenic cell lines in which EGFR, EGFRvIII and/or PTEN were expressed. Our results show that cell lines with EGFR overexpression and constitutive EGFRvIII expression differ remarkably in the expression profiles for both secreted and intracellular signaling proteins, and alterations in EGFR signaling result in reproducible changes in concentrations of secreted proteins. Furthermore, the EGFRvIII-expressing mutant cell line secretes the majority of the selected invasion-promoting proteins at higher levels than other cell lines tested. Additionally, the intracellular and extracellular protein measurements indicate elevated oxidative stress in the EGFRvIII-expressing cell line. In conclusion, the results of our study demonstrate that EGFR signaling has a significant effect on the levels of secreted invasion-promoting proteins, likely contributing to the aggressiveness of GBM. Further characterization of these proteins may provide candidates for new therapeutic strategies and targets as well as biomarkers for this aggressive disease.
    Full-text · Article · Jul 2014 · Molecular & Cellular Proteomics
  • [Show abstract] [Hide abstract]
    ABSTRACT: PeptideAtlas, SRMAtlas, and PASSEL are Web-accessible resources to support discovery and targeted proteomics research. PeptideAtlas is a multi-species compendium of shotgun proteomic data provided by the scientific community; SRMAtlas is a resource of high-quality, complete proteome SRM assays generated in a consistent manner for the targeted identification and quantification of proteins; and PASSEL is a repository that compiles and represents selected reaction monitoring data, all in an easy-to-use interface. The databases are generated from native mass spectrometry data files that are analyzed in a standardized manner including statistical validation of the results. Each resource offers search functionalities and can be queried by user-defined constraints; the query results are provided in tables or are graphically displayed. PeptideAtlas, SRMAtlas, and PASSEL are publicly available freely via the Web site http://www.peptideatlas.org. In this protocol, we describe the use of these resources, we highlight how to submit, search, collate and download data. Curr. Protoc. Bioinform. 46:13.25.1-13.25.28. © 2014 by John Wiley & Sons, Inc.
    No preview · Article · Jun 2014 · Current protocols in bioinformatics / editoral board, Andreas D. Baxevanis ... [et al.]
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reversible protein phosphorylation determines growth and adaptive decisions in Mycobacterium tuberculosis (Mtb). At least 11 two-component systems and 11 Ser/Thr protein kinases (STPKs) mediate phosphorylation on Asp, His, Ser, and Thr. In contrast, protein phosphorylation on Tyr has not been described previously in Mtb. Here, using a combination of phospho-enrichment and highly sensitive mass spectrometry, we show extensive protein Tyr phosphorylation of diverse Mtb proteins, including STPKs. Several STPKs function as dual-specificity kinases that phosphorylate Tyr in cis and in trans, suggesting that dual-specificity kinases have a major role in bacterial phospho-signaling. Mutation of a phosphotyrosine site of the essential STPK PknB reduces its activity in vitro and in live Mtb, indicating that Tyr phosphorylation has a functional role in bacterial growth. These data identify a previously unrecognized phosphorylation system in a human pathogen that claims ∼1.4 million lives every year.
    Full-text · Article · Jun 2014 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1 is taken up by immature monocyte derived dendritic cells (iMDDCs) into tetraspanin rich caves from which the virus can either be transferred to T lymphocytes or enter into endosomes resulting in degradation. HIV-1 binding and fusion with the DC membrane results in low level de novo infection that can also be transferred to T lymphocytes at a later stage. We have previously reported that HIV-1 can induce partial maturation of iMDDCs at both stages of trafficking. Here we show that CD45(+) microvesicles (MV) which contaminate purified HIV-1 inocula due to similar size and density, affect DC maturation, de novo HIV-1 infection and transfer to T lymphocytes. Comparing iMDDCs infected with CD45-depleted HIV-1BaL or matched non-depleted preparations, the presence of CD45(+) MVs was shown to enhance DC maturation and ICAM-1 (CD54) expression, which is involved in DC∶T lymphocyte interactions, while restricting HIV-1 infection of MDDCs. Furthermore, in the DC culture HIV-1 infected (p24(+)) MDDCs were more mature than bystander cells. Depletion of MVs from the HIV-1 inoculum markedly inhibited DC∶T lymphocyte clustering and the induction of alloproliferation as well as limiting HIV-1 transfer from DCs to T lymphocytes. The effects of MV depletion on these functions were reversed by the re-addition of purified MVs from activated but not non-activated SUPT1.CCR5-CL.30 or primary T cells. Analysis of the protein complement of these MVs and of these HIV-1 inocula before and after MV depletion showed that Heat Shock Proteins (HSPs) and nef were the likely DC maturation candidates. Recombinant HSP90α and β and nef all induced DC maturation and ICAM-1 expression, greater when combined. These results suggest that MVs contaminating HIV-1 released from infected T lymphocytes may be biologically important, especially in enhancing T cell activation, during uptake by DCs in vitro and in vivo, particularly as MVs have been detected in the circulation of HIV-1 infected subjects.
    Full-text · Article · Oct 2013 · PLoS Pathogens
  • [Show abstract] [Hide abstract]
    ABSTRACT: [This corrects the article on p. e1003700 in vol. 9.].
    No preview · Article · Oct 2013 · PLoS Pathogens
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-mesenchymal transition (EMT) is a highly conserved morphogenic process defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. EMT is associated with increased aggressiveness, invasiveness, and metastatic potential in carcinoma cells. To assess the contribution of extracellular vesicles during EMT, we conducted a proteomic analysis of exosomes released from Madin Darby canine kidney (MDCK) cells, and MDCK cells transformed with oncogenic H-Ras (21D1 cells). Exosomes are 40 to 100 nm membranous vesicles originating from the inward budding of late endosomes and multivesicular bodies (MVBs) and are released from cells upon fusion of MVBs with the plasma membrane. Exosomes from MDCK cells (MDCK Exos) and 21D1 cells (21D1Exos) were purified from cell culture media using density gradient centrifugation (OptiPrep), and protein content identified by GeLC MS/MS proteomic profiling. Both MDCK- and 21D1-Exos populations were morphologically similar by cryoelectron microscopy and contained stereotypical exosomes marker proteins such as TSG101, Alix and CD63. In this study we show that the expression levels of typical EMT hallmark proteins seen in whole cells correlate with those observed in MDCKExos and 21D1Exos; i.e., reduction of characteristic inhibitor of angiogenesis, thrombospondin1 and epithelial markers Ecadherin, and EpCAM, with a concomitant up-regulation of mesenchymal makers such as vimentin. Further, we reveal that 21D1Exos are enriched with several proteases (e.g., MMP1, MMP14, MMP19, ADAM10, ADAMTS1), and integrins (e.g., ITGB1, ITGA3, ITGA6) that have been recently implicated in regulating the tumour microenvironment to promote metastatic progression. A salient finding of this study was the unique presence of key transcriptional regulators (e.g., the master transcriptional regulator YXB1) and core splicing complex components (e.g., SF3B1, SF3B3 and SFRS1) in mesenchymal 21D1Exos. Taken together, our findings reveal that exosomes from Ras-transformed MDCK cells are reprogrammed with factors which may be capable of inducing EMT in recipient cells.
    Full-text · Article · May 2013 · Molecular & Cellular Proteomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein biomarkers have the potential to transform medicine as they are clinically used to diagnose diseases, stratify patients and follow disease states. Even though a large number of potential biomarkers have been proposed over the past few years, almost none of them have been so far implemented in the clinic. One of the reasons for this limited success is the lack of technologies to validate proposed biomarker candidates in larger patient cohorts. This limitation could be alleviated by the use of antibody-independent validation methods such as Selected Reaction Monitoring (SRM). Similar to measurements based on affinity-reagents, SRM based targeted mass spectrometry also requires the generation of definitive assays for each targeted analyte. Here we present a library of SRM assays for 5568 N-glycosites enabling the multiplexed evaluation of clinically relevant N-glycoproteins as biomarker candidates. We demonstrate that this resource can be utilized to select SRM assay sets for cancer-associated N-glycoproteins for their subsequent multiplexed and consistent quantification in 120 human plasma samples. We show that N-glycoproteins spanning five orders of magnitude in abundance can be quantified and that previously reported abundance differences in various cancer types can be recapitulated. Together, the established N-Glycoprotein SRMAtlas resource (available online at http://www.srmatlas.org/) facilitates parallel, efficient, consistent, and sensitive evaluation of proposed biomarker candidates in large clinical sample cohorts.
    Full-text · Article · Feb 2013 · Molecular & Cellular Proteomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Experience from different fields of life sciences suggests that accessible, complete reference maps of the components of the system under study are highly beneficial research tools. Examples of such maps include libraries of the spectroscopic properties of molecules, or databases of drug structures in analytical or forensic chemistry. Such maps, and methods to navigate them, constitute reliable assays to probe any sample for the presence and amount of molecules contained in the map. So far, attempts to generate such maps for any proteome have failed to reach complete proteome coverage. Here we use a strategy based on high-throughput peptide synthesis and mass spectrometry to generate an almost complete reference map (97% of the genome-predicted proteins) of the Saccharomyces cerevisiae proteome. We generated two versions of this mass-spectrometric map, one supporting discovery-driven (shotgun) and the other supporting hypothesis-driven (targeted) proteomic measurements. Together, the two versions of the map constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. To show the utility of the maps, we applied them to a protein quantitative trait locus (QTL) analysis, which requires precise measurement of the same set of peptides over a large number of samples. Protein measurements over 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, influencing the levels of related proteins. Our results suggest that selective pressure favours the acquisition of sets of polymorphisms that adapt protein levels but also maintain the stoichiometry of functionally related pathway members.
    Full-text · Article · Jan 2013 · Nature

  • No preview · Article · Jul 2012 · Science translational medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rigorous testing of hypotheses on suitable sample cohorts is a major limitation in translational research. This is particularly the case for the validation of protein biomarkers; the lack of accurate, reproducible, and sensitive assays for most proteins has precluded the systematic assessment of hundreds of potential marker proteins described in the literature. Here, we describe a high-throughput method for the development and refinement of selected reaction monitoring (SRM) assays for human proteins. The method was applied to generate such assays for more than 1000 cancer-associated proteins, which are functionally related to candidate cancer driver mutations. We used the assays to determine the detectability of the target proteins in two clinically relevant samples: plasma and urine. One hundred eighty-two proteins were detected in depleted plasma, spanning five orders of magnitude in abundance and reaching below a concentration of 10 ng/ml. The narrower concentration range of proteins in urine allowed the detection of 408 proteins. Moreover, we demonstrate that these SRM assays allow reproducible quantification by monitoring 34 biomarker candidates across 83 patient plasma samples. Through public access to the entire assay library, researchers will be able to target their cancer-associated proteins of interest in any sample type using the detectability information in plasma and urine as a guide. The generated expandable reference map of SRM assays for cancer-associated proteins will be a valuable resource for accelerating and planning biomarker verification studies.
    No preview · Article · Jul 2012 · Science translational medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Selected reaction monitoring (SRM) is an accurate quantitative technique, typically used for small-molecule mass spectrometry (MS). SRM has emerged as an important technique for targeted and hypothesis-driven proteomic research, and is becoming the reference method for protein quantification in complex biological samples. SRM offers high selectivity, a lower limit of detection and improved reproducibility, compared to conventional shot-gun-based tandem MS (LC-MS/MS) methods. Unlike LC-MS/MS, which requires computationally intensive informatic postanalysis, SRM requires preacquisition bioinformatic analysis to determine proteotypic peptides and optimal transitions to uniquely identify and to accurately quantitate proteins of interest. Extensive arrays of bioinformatics software tools, both web-based and stand-alone, have been published to assist researchers to determine optimal peptides and transition sets. The transitions are oftentimes selected based on preferred precursor charge state, peptide molecular weight, hydrophobicity, fragmentation pattern at a given collision energy (CE), and instrumentation chosen. Validation of the selected transitions for each peptide is critical since peptide performance varies depending on the mass spectrometer used. In this review, we provide an overview of open source and commercial bioinformatic tools for analyzing LC-MS data acquired by SRM.
    No preview · Article · Apr 2012 · Proteomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Public repositories for proteomics data have accelerated proteomics research by enabling more efficient cross-analyses of datasets, supporting the creation of protein and peptide compendia of experimental results, supporting the development and testing of new software tools, and facilitating the manuscript review process. The repositories available to date have been designed to accommodate either shotgun experiments or generic proteomic data files. Here, we describe a new kind of proteomic data repository for the collection and representation of data from selected reaction monitoring (SRM) measurements. The PeptideAtlas SRM Experiment Library (PASSEL) allows researchers to easily submit proteomic data sets generated by SRM. The raw data are automatically processed in a uniform manner and the results are stored in a database, where they may be downloaded or browsed via a web interface that includes a chromatogram viewer. PASSELenables cross-analysis of SRMdata, supports optimization of SRMdata collection, and facilitates the review process of SRMdata. Further, PASSELwill help in the assessment of proteotypic peptide performance in a wide array of samples containing the same peptide, as well as across multiple experimental protocols.
    Full-text · Article · Apr 2012 · Proteomics