Timothy M. Carlton

University of Cambridge, Cambridge, England, United Kingdom

Are you Timothy M. Carlton?

Claim your profile

Publications (3)13.91 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the economically important phytopathogen, Pectobacterium atrosepticum, expression of plant cell wall degrading enzymes and other virulence determinants is controlled in a cell density-dependent fashion, termed quorum sensing (QS). Canonical QS systems in Gram-negative bacteria contain a LuxI-type protein, synthesizing a signalling molecule, and a LuxR-type regulator, responding to the signalling molecule above threshold concentrations. In P. atrosepticum, the central LuxR-type repressor of virulence, VirR, has been identified and its impacts on virulence characterized. Here we define the broader VirR regulon using chromatin immunoprecipitation (ChIP) and in planta microarrays. Ninety-four direct VirR targets were identified by ChIP microarrays and a consensus VirR binding site was determined. Purified VirR was used in DNA gel shift assays on target promoters and VirR : promoter binding was disrupted by exogenous addition of the signalling molecule, N-(3-oxohexanoyl)-l-homoserine lactone (OHHL). VirR autorepressed, and directly activated the transcription of rsmA in the absence of OHHL. Finally, we showed that VirR directly regulated the production of siderophores and controlled swimming motility. This is the first report characterizing the direct targets of VirR and provides clear evidence that this LuxR-type protein can act in vivo as both an activator and repressor of transcription in the absence of its cognate signalling molecule.
    No preview · Article · Jun 2012 · Environmental Microbiology
  • Source
    Simon Poulter · Timothy M Carlton · David R Spring · George P.C. Salmond
    [Show abstract] [Hide abstract]
    ABSTRACT: In Gram-negative bacteria, quorum sensing control of gene expression is mediated by transcription factors of the LuxR family, whose DNA-binding affinity is modulated by diffusible N-acyl homoserine lactone (AHL) signalling molecules. In Serratia sp. ATCC 39006 and the plant pathogen Erwinia carotovora ssp. carotovora (Ecc), the biosynthesis of the β-lactam antibiotic 1-carbapen-2-em-3-carboxylic acid (Car) is under quorum sensing control. This study has revealed that, uniquely, the LuxR family transcriptional activator CarR(39006) from Serratia 39006 has no detectable affinity for cognate AHL molecules. Furthermore, CarR(39006) was shown to be naturally competent to bind to its target promoter with high affinity, activate transcription and resist cellular proteolysis, and was unaffected by AHL signals. Experiments with chimeric proteins suggest that the C-terminal DNA-binding domain of CarR(39006) may be responsible for conferring AHL independence. In contrast, we show that the homologous CarR(Ecc) protein binds to its 3O-C6-HSL ligand with high affinity, and that the highly conserved Trp-44 residue is critical for this interaction. Unlike TraR from Agrobacterium tumefaciens, CarR(Ecc) is not directly protected from cellular proteolysis by AHL binding, but via AHL-induced DNA binding. At physiological protein concentrations, AHL binding induces CarR(Ecc) to bind to its target promoter with higher affinity and activate transcription.
    Preview · Article · Mar 2011 · Molecular Microbiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many Gram-negative bacteria use quorum sensing (QS) to regulate expression of multiple genes, by utilizing small diffusible signalling molecules called N-acyl homoserine lactones (acyl-HSLs). Serratia sp. ATCC 39006 produces the red pigment prodigiosin under QS control, in response to the short-chain signal C4-HSL. In this study, we have demonstrated that an acyl-HSL-deficient mutant can be used as a visual biosensor to detect short-chain acyl-HSLs. We have quantified the acyl-HSL sensitivity spectrum of the Serratia 39006 prodigiosin QS system, and have demonstrated a strong specificity for the natural ligand C4-HSL. Mutations in the pigX and pigZ genes in Serratia 39006 resulted in an overproduction of prodigiosin, caused by increased transcription of the prodigiosin biosynthetic operon. A new biosensor (SP19) with enhanced prodigiosin production was created by addition of pigX and pigZ mutations to the existing biosensor. We have demonstrated that SP19 is superior to biosensor strains CV026 and Agrobacterium NTL4 (pZLR4) for the detection of short-chain acyl-HSLs present in spent culture supernatants. Researchers working with QS bacteria that produce short-chain acyl-HSLs can use strain SP19 as a simple visual acyl-HSL biosensor with no requirement for expensive detection equipment.
    Full-text · Article · Mar 2010 · Environmental Microbiology Reports