Robert D Goldman

Northwestern University, Evanston, Illinois, United States

Are you Robert D Goldman?

Claim your profile

Publications (293)

  • Karen M. Ridge · Dale Shumaker · Amélie Robert · [...] · Robert D. Goldman
    [Show abstract] [Hide abstract] ABSTRACT: The type III intermediate filament protein vimentin was once thought to function mainly as a static structural protein in the cytoskeleton of cells of mesenchymal origin. Now, however, vimentin is known to form a dynamic, flexible network that plays an important role in a number of signaling pathways. Here, we describe various methods that have been developed to investigate the cellular functions of the vimentin protein and intermediate filament network, including chemical disruption, photoactivation and photoconversion, biolayer interferometry, soluble bead binding assay, three-dimensional substrate experiments, collagen gel contraction, optical-tweezer active microrheology, and force spectrum microscopy. Using these techniques, the contributions of vimentin to essential cellular processes can be probed in ever further detail.
    Chapter · Dec 2016
  • [Show abstract] [Hide abstract] ABSTRACT: Increased expression of vimentin intermediate filaments (VIFs) enhances directed cell migration, but the mechanism behind VIFs' effect on motility is not understood. VIFs interact with microtubules, whose organization contributes to polarity maintenance in migrating cells. Here, we characterize the dynamic coordination of VIF and microtubule networks in wounded monolayers of retinal pigment epithelial cells. By genome editing, we fluorescently labeled endogenous vimentin and ?-tubulin, and we developed computational image analysis to delineate architecture and interactions of the two networks. Our results show that VIFs assemble an ultrastructural copy of the previously polarized microtubule network. Because the VIF network is long-lived compared to the microtubule network, VIFs template future microtubule growth along previous microtubule tracks, thus providing a feedback mechanism that maintains cell polarity. VIF knockdown prevents cells from polarizing and migrating properly during wound healing. We suggest that VIFs' templating function establishes a memory in microtubule organization that enhances persistence in cell polarization in general and migration in particular.
    Article · Sep 2016
  • [Show abstract] [Hide abstract] ABSTRACT: Mutation of the LMNA gene, encoding nuclear lamin A/C, is a common cause of familial dilated cardiomyopathy (DCM). Among Finnish DCM patients, the founder mutation c.427T>C (p.S143P) is the most frequently reported genetic variant. Here we show that p.S143P lamin A/C is more nucleoplasmic and soluble than wild type lamin A/C and accumulates into large intranuclear aggregates in a fraction of cultured patient fibroblasts as well as in cells ectopically expressing either FLAG- or GFP-tagged p.S143P lamin A. In fluorescence loss in photobleaching (FLIP) experiments, non-aggregated EGFP-tagged p.S143P lamin A is significantly more dynamic. In in vitro association studies p.S143P lamin A failed to form appropriate filament structures but instead assembled into disorganized aggregates similar to those observed in patient cell nuclei. A whole genome expression analysis revealed an elevated unfolded protein response (UPR) in p.S143P lamin A/C expressing cells. Additional endoplasmic reticulum (ER) stress induced by tunicamycin reduced the viability of mutant lamin expressing cells further. In summary, p.S143P lamin A/C affects normal lamina structure and influences the cellular stress response, homeostasis and viability.
    Article · May 2016 · Journal of Cell Science
  • [Show abstract] [Hide abstract] ABSTRACT: Intermediate filaments (IF) are cytoskeletal polymers that extend from the nucleus to the cell membrane, giving cells their shape and form. Abnormal accumulation of IFs is involved in the pathogenesis of number neurodegenerative diseases, but none as clearly as Giant Axonal Neuropathy (GAN), a ravaging disease caused by mutations in GAN, encoding gigaxonin. Patients display early and severe degeneration of the peripheral nervous system along with IF accumulation, but it has been difficult to link GAN mutations to any particular dysfunction, in part because GAN null mice have a very mild phenotype. We therefore established a robust dorsal root ganglion neuronal model that mirrors key cellular events underlying GAN. We demonstrate that gigaxonin is crucial for ubiquitin-proteasomal degradation of neuronal IF. Moreover, IF accumulation impairs mitochondrial motility and is associated with metabolic and oxidative stress. These results have implications for other neurological disorders whose pathology includes IF accumulation.
    Article · Mar 2016 · Human Molecular Genetics
  • Source
    Jason Lowery · Nikhil Jain · Edward R Kuczmarski · [...] · Robert D Goldman
    [Show abstract] [Hide abstract] ABSTRACT: Giant Axonal Neuropathy (GAN) is a rare disease caused by mutations in the GAN gene which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IF. In this study we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to GAN patients' fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization which cause the loss of mitochondrial motility.
    Full-text available · Article · Dec 2015 · Molecular biology of the cell
  • Dataset · Nov 2015
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents and is associated with human diseases1, 2, 3. Although extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known about the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery4, 5, 6, is present in the nucleus and directly interacts with the nuclear lamina protein lamin B1, and binds to lamin-associated domains on chromatin. This LC3–lamin B1 interaction does not downregulate lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated RAS. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers lamin B1 to the lysosome. Inhibiting autophagy or the LC3–lamin B1 interaction prevents activated RAS-induced lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests that this new function of autophagy acts as a guarding mechanism protecting cells from tumorigenesis.
    Full-text available · Article · Nov 2015 · Nature
  • Source
    Takeshi Shimi · Mark Kittisopikul · Joseph Tran · [...] · Robert D Goldman
    [Show abstract] [Hide abstract] ABSTRACT: The nuclear lamina is a key structural element of the metazoan nucleus. However, the structural organization of the major proteins composing the lamina remains poorly defined. Using three-dimensional Structured Illumination Microscopy and computational image analysis, we have characterized the supramolecular structures of lamin A, C, B1 and B2 in mouse embryo fibroblast nuclei. Each isoform forms a distinct fiber meshwork, having comparable physical characteristics with respect to mesh edge length, mesh face area and shape, and edge connectivity to form faces. Some differences were found in face areas between isoforms due to variation in the edge lengths and number of edges per face, suggesting that each meshwork has somewhat unique assembly characteristics. In fibroblasts null for the expression of either lamins A/C or lamin B1, the remaining lamin meshworks are altered compared with the lamin meshworks in wild type nuclei or nuclei lacking lamin B2. Nuclei lacking LA/C exhibit slightly enlarged meshwork faces and some shape changes, whereas LB1-deficient nuclei exhibit primarily a substantial increase in face area. These studies demonstrate that individual lamin isoforms assemble into complex networks within the nuclear lamina and that A-type and B-type lamins have distinct roles in maintaining the organization of the nuclear lamina.
    Full-text available · Article · Aug 2015 · Molecular biology of the cell
  • [Show abstract] [Hide abstract] ABSTRACT: Intermediate Filaments (IFs) are composed of one or more members of a large family of cytoskeletal proteins, whose expression is cell and tissue type specific. Their importance in regulating the physiological properties of cells is becoming widely recognized in functions ranging from cell motility to signal transduction. IF proteins assemble into nanoscale biopolymers with unique strain hardening properties that are related to their roles in regulating the mechanical integrity of cells. Furthermore, mutations in the genes encoding IF proteins cause a wide range of human diseases. Due to the number of different types of IF proteins, we have limited this short review to cover structure and function topics mainly related to the simpler homopolymer IF networks comprised of vimentin, and specifically for diseases, the related muscle-specific desmin IF networks. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Article · May 2015 · Journal of Biological Chemistry
  • Source
    Sarah Köster · David A Weitz · Robert D Goldman · [...] · Harald Herrmann
    [Show abstract] [Hide abstract] ABSTRACT: Intermediate filament proteins form filaments, fibers and networks both in the cytoplasm and the nucleus of metazoan cells. Their general structural building plan accommodates highly varying amino acid sequences to yield extended dimeric α-helical coiled coils of highly conserved design. These 'rod' particles are the basic building blocks of intrinsically flexible, filamentous structures that are able to resist high mechanical stresses, that is, bending and stretching to a considerable degree, both in vitro and in the cell. Biophysical and computer modeling studies are beginning to unfold detailed structural and mechanical insights into these major supramolecular assemblies of cell architecture, not only in the 'test tube' but also in the cellular and tissue context. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Full-text available · Article · Feb 2015 · Current Opinion in Cell Biology
  • Mikkel H. Jensen · Eliza J. Morris · Robert D. Goldman · David A. Weitz
    Article · Jan 2015 · Biophysical Journal
  • Katrin Bercht Pfleghaar · Pekka Taimen · Veronika Butin-Israeli · [...] · Robert D Goldman
    [Show abstract] [Hide abstract] ABSTRACT: More than 20 mutations in the gene encoding A-type lamins (LMNA) cause progeria, a rare premature aging disorder. The major pathognomonic hallmarks of progeria cells are seen as nuclear deformations or blebs that are related to the redistribution of A- and B-type lamins within the nuclear lamina. However, the functional significance of these progeria-associated blebs remains unknown. We have carried out an analysis of the structural and functional consequences of progeria-associated nuclear blebs in dermal fibroblasts from a progeria patient carrying a rare point mutation p.S143F (C428T) in lamin A/C. These blebs form microdomains that are devoid of major structural components of the nuclear envelope (NE)/lamina including B-type lamins and nuclear pore complexes (NPCs) and are enriched in A-type lamins. Using laser capture microdissection and comparative genomic hybridization (CGH) analyses, we show that, while these domains are devoid of centromeric heterochromatin and gene-poor regions of chromosomes, they are enriched in gene-rich chromosomal regions. The active form of RNA polymerase II is also greatly enriched in blebs as well as nascent RNA but the nuclear co-activator SKIP is significantly reduced in blebs compared to other transcription factors. Our results suggest that the p.S143F progeria mutation has a severe impact not only on the structure of the lamina but also on the organization of interphase chromatin domains and transcription. These structural defects are likely to contribute to gene expression changes reported in progeria and other types of laminopathies.
    Article · Jan 2015 · Nucleus (Austin, Texas)
  • Source
    Veronika Butin-Israeli · Stephen A Adam · Nikhil Jain · [...] · Robert D Goldman
    [Show abstract] [Hide abstract] ABSTRACT: Nuclear lamins play important roles in the organization and structure of the nucleus; however, the specific mechanisms linking lamin structure to nuclear functions are poorly defined. We demonstrate that reducing nuclear lamin B1 expression by shRNA-mediated silencing in cancer cell lines to approximately 50% of normal levels causes a delay of the cell cycle and an accumulation of cells in early S phase. The S phase delay appears to be due to the stalling and collapse of replication forks. The double strand DNA breaks resulting from replication fork collapse were inefficiently repaired causing persistent DNA damage signaling and the assembly of extensive repair foci on chromatin. The expression of multiple factors involved in DNA replication and DNA repair by both non-homologous end joining and homologous repair is misregulated when lamin B1 levels are reduced. We further demonstrate that lamin B1 interacts directly with the promoters of some genes associated with DNA damage response and repair including BRCA1 and RAD51. Taken together the results suggest that the maintenance of lamin B1 levels is required for DNA replication and repair through regulating the expression of key factors involved in these essential nuclear functions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
    Full-text available · Article · Dec 2014 · Molecular and Cellular Biology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Telomeres protect the ends of linear genomes, and the gradual loss of telomeres is associated with cellular ageing. Telomere protection involves the insertion of the 3' overhang facilitated by telomere repeat-binding factor 2 (TRF2) into telomeric DNA, forming t-loops. We present evidence suggesting that t-loops can also form at interstitial telomeric sequences in a TRF2-dependent manner, forming an interstitial t-loop (ITL). We demonstrate that TRF2 association with interstitial telomeric sequences is stabilized by co-localization with A-type lamins (lamin A/C). We also find that lamin A/C interacts with TRF2 and that reduction in levels of lamin A/C or mutations in LMNA that cause an autosomal dominant premature ageing disorder-Hutchinson Gilford Progeria Syndrome (HGPS)-lead to reduced ITL formation and telomere loss. We propose that cellular and organismal ageing are intertwined through the effects of the interaction between TRF2 and lamin A/C on chromosome structure.
    Full-text available · Article · Nov 2014 · Nature Communications
  • [Show abstract] [Hide abstract] ABSTRACT: This study demonstrates that the association of mitochondria with vimentin intermediate filaments (VIFs) measurably increases their membrane potential. This increase is detected by quantitatively comparing the fluorescence intensity of mitochondria stained with the membrane potential-sensitive dye tetramethylrhodamine-ethyl ester (TMRE) in murine vimentin-null fibroblasts with that in the same cells expressing human vimentin (∼35% rise). When vimentin expression is silenced by small hairpin RNA (shRNA) to reduce vimentin by 90%, the fluorescence intensity of mitochondria decreases by 20%. The increase in membrane potential is caused by specific interactions between a subdomain of the non-α-helical N terminus (residues 40 to 93) of vimentin and mitochondria. In rho 0 cells lacking mitochondrial DNA (mtDNA) and consequently missing several key proteins in the mitochondrial respiratory chain (ρ(0) cells), the membrane potential generated by an alternative anaerobic process is insensitive to the interactions between mitochondria and VIF. The results of our studies show that the close association between mitochondria and VIF is important both for determining their position in cells and their physiologic activity.-Chernoivanenko, I. S., Matveeva, E. A., Gelfand, V. I., Goldman, R. D., and Minin, A. A. Mitochondrial membrane potential is regulated by vimentin intermediate filaments. © FASEB.
    Article · Nov 2014 · The FASEB Journal
  • [Show abstract] [Hide abstract] ABSTRACT: Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, nonthermal motion. Here, we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations. Using FSM, we show that force fluctuations substantially enhance intracellular movement of small and large components. The fluctuations are three times larger in malignant cells than in their benign counterparts. We further demonstrate that vimentin acts globally to anchor organelles against randomly fluctuating forces in the cytoplasm, with no effect on their magnitude. Thus, FSM has broad applications for understanding the cytoplasm and its intracellular processes in relation to cell physiology in healthy and diseased states.
    Article · Aug 2014 · Cell
  • Source
    Mikkel H Jensen · Eliza J Morris · Robert D Goldman · David A Weitz
    [Show abstract] [Hide abstract] ABSTRACT: The semiflexible polymers filamentous actin (F-actin) and intermediate filaments (IF) both form complex networks within the cell, and together are key determinants of cellular stiffness. While the mechanics of F-actin networks together with stiff microtubules have been characterized, the interplay between F-actin and IF networks is largely unknown, necessitating the study of composite networks using mixtures of semiflexible biopolymers. We employ bulk rheology in a simplified in vitro system to uncover the fundamental mechanical interactions between networks of the 2 semiflexible polymers, F-actin and vimentin IF. Surprisingly, co-polymerization of actin and vimentin can produce composite networks either stronger or weaker than pure F-actin networks. We show that this effect occurs through steric constraints imposed by IF on F-actin during network formation and filament crosslinking, highlighting novel emergent behavior in composite semiflexible networks.
    Full-text available · Article · May 2014 · Bioarchitecture
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Nuclear lamins form the major structural elements comprising the nuclear lamina. While loss of nuclear structural integrity has been implicated as a key factor in the lamin A gene mutations causing laminopathies, the normal regulation of lamin A/C (LA/C) assembly and organization in interphase cells is still undefined. We assumed phosphorylation to be a major determinant, identifying 21 prime interphase phosphorylation sites, with 8 high turnover sites. The roles of these latter sites were examined by site-directed mutagenesis, followed by detailed microscopic analysis, including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and nuclear extraction techniques. Results reveal three phosphorylation regions, each with dominant sites, together controlling LA/C structure and dynamics. Interestingly, two of these interphase sites are hyperphosphorylated in mitotic cells and one is within the sequence missing in progerin of the Hutchinson Gilford Progeria Syndrome. A model is presented where different phosphorylation combinations will yield markedly different effects on the assembly, subunit turnover, and mobility of LA/C between and within the lamina, the nucleoplasm, and the cytoplasm of interphase cells.
    Full-text available · Article · Apr 2014 · Journal of Cell Science
  • Takeshi Shimi · Robert D Goldman
    [Show abstract] [Hide abstract] ABSTRACT: In mammalian cells, the nuclear lamina is composed of a complex fibrillar network associated with the inner membrane of the nuclear envelope. The lamina provides mechanical support for the nucleus and functions as the major determinant of its size and shape. At its innermost aspect it associates with peripheral components of chromatin and thereby contributes to the organization of interphase chromosomes. The A- and B-type lamins are the major structural components of the lamina, and numerous mutations in the A-type lamin gene have been shown to cause many types of human diseases collectively known as the laminopathies. These mutations have also been shown to cause a disruption in the normal interactions between the A and B lamin networks. The impact of these mutations on nuclear functions is related to the roles of lamins in regulating various essential processes including DNA synthesis and damage repair, transcription and the regulation of genes involved in the response to oxidative stress. The major cause of oxidative stress is the production of reactive oxygen species (ROS), which is critically important for cell proliferation and longevity. Moderate increases in ROS act to initiate signaling pathways involved in cell proliferation and differentiation, whereas excessive increases in ROS cause oxidative stress, which in turn induces cell death and/or senescence. In this review, we cover current findings about the role of lamins in regulating cell proliferation and longevity through oxidative stress responses and ROS signaling pathways. We also speculate on the involvement of lamins in tumor cell proliferation through the control of ROS metabolism.
    Article · Feb 2014 · Advances in Experimental Medicine and Biology
  • [Show abstract] [Hide abstract] ABSTRACT: The nuclear lamina (NL) consists of lamin polymers and proteins that bind to the polymers. Disruption of NL proteins such as lamin and emerin leads to developmental defects and human diseases. However, the expression of multiple lamins, including lamin-A/C, lamin-B1, and lamin-B2, in mammals has made it difficult to study the assembly and function of the NL. Consequently, it remains unclear whether different lamins depend on one another for proper NL assembly and which NL functions are shared by all lamins or are specific to one lamin. Using mouse cells deleted of all or different combinations of lamins, we demonstrate that the assembly of each lamin into NL depends primarily on the lamin concentration present in the nucleus. When expressed at sufficiently high levels, each lamin alone can assemble into an evenly organized NL, which is in turn sufficient to ensure the even distribution of the nuclear pore complexes (NPC). By contrast, only lamin-A can ensure the localization of emerin within the NL. Thus, when investigating the role of the NL in development and disease, it is critical to determine the protein levels of relevant lamins and the intricate shared or specific lamin functions in the tissue of interest.
    Article · Feb 2014 · Molecular biology of the cell

Publication Stats

21k Citations


  • 1984-2009
    • Northwestern University
      • Department of Cell and Molecular Biology
      Evanston, Illinois, United States
  • 2004
    • University of Turku
      • Department of Biology
      Turku, Western Finland, Finland
  • 2002
    • Hebrew University of Jerusalem
      Yerushalayim, Jerusalem, Israel
  • 2001
    • University of Basel
      Bâle, Basel-City, Switzerland
    • University of Massachusetts Amherst
      Amherst Center, Massachusetts, United States
  • 1999
    • University of Pennsylvania
      • Institute for Medicine and Engineering
      Philadelphia, PA, United States
  • 1998
    • Johns Hopkins University
      • Department of Biological Chemistry
      Baltimore, Maryland, United States
    • University of California, Davis
      • Department of Mechanical and Aerospace Engineering
      Davis, California, United States
    • Columbia University
      • Department of Pathology & Cell Biology
      New York, New York, United States
  • 1973
    • Case Western Reserve University
      • Department of Biology
      Cleveland, Ohio, United States
  • 1970
    • Institute of Human Virology
      Maryland City, Maryland, United States