A. Collier Cameron

University of St Andrews, Saint Andrews, Scotland, United Kingdom

Are you A. Collier Cameron?

Claim your profile

Publications (395)1174.83 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Sun is the only star whose surface can be directly resolved at high resolution, and therefore constitutes an excellent test case to explore the physical origin of stellar radial-velocity (RV) variability. We present HARPS observations of sunlight scattered off the bright asteroid 4/Vesta, from which we deduced the Sun's activity-driven RV variations. In parallel, the HMI instrument onboard the Solar Dynamics Observatory provided us with simultaneous high spatial resolution magnetograms, Dopplergrams, and continuum images of the Sun in the Fe I 6173A line. We determine the RV modulation arising from the suppression of granular blueshift in magnetised regions and the flux imbalance induced by dark spots and bright faculae. The rms velocity amplitudes of these contributions are 2.40 m/s and 0.41 m/s, respectively, which confirms that the inhibition of convection is the dominant source of activity-induced RV variations at play, in accordance with previous studies. We find the Doppler imbalances of spot and plage regions to be only weakly anticorrelated. Lightcurves can thus only give incomplete predictions of convective blueshift suppression. We must instead seek proxies that track the plage coverage on the visible stellar hemisphere directly. The chromospheric flux index R'_HK derived from the HARPS spectra performs poorly in this respect, possibly because of the differences in limb brightening/darkening in the chromosphere and photosphere. We also find that the activity-driven RV variations of the Sun are strongly correlated with its full-disc magnetic flux density, which may become a useful proxy for activity-related RV noise.
    No preview · Article · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. The presence of a small-mass planet (M$_p<$0.1\,M$_{Jup}$) seems, to date, not to depend on metallicity, however, theoretical simulations have shown that stars with subsolar metallicities may be favoured for harbouring smaller planets. A large, dedicated survey of metal-poor stars with the HARPS spectrograph has thus been carried out to search for Neptunes and super-Earths. Aims. In this paper, we present the analysis of \object{HD175607}, an old G6 star with metallicity [Fe/H] = -0.62. We gathered 119 radial velocity measurements in 110 nights over a time span of more than nine years. Methods. The radial velocities were analysed using Lomb-Scargle periodograms, a genetic algorithm, a Markov chain Monte Carlo analysis, and a Gaussian processes analysis. The spectra were also used to derive stellar properties. Several activity indicators were analysed to study the effect of stellar activity on the radial velocities. Results. We find evidence for the presence of a small Neptune-mass planet (M$_{p}\sin i = 8.98\pm1.10$\,M$_{\oplus}$) orbiting this star with an orbital period $P = 29.01\pm0.02$\, days in a slightly eccentric orbit ($e=0.11\pm0.08$). The period of this Neptune is close to the estimated rotational period of the star. However, from a detailed analysis of the radial velocities together with the stellar activity, we conclude that the best explanation of the signal is indeed the presence of a planetary companion rather than stellar related. An additional longer period signal ($P\sim 1400$\,d) is present in the data, for which more measurements are needed to constrain its nature and its properties. Conclusions. HD\,175607 is the most metal-poor FGK dwarf with a detected low-mass planet amongst the currently known planet hosts. This discovery may thus have important consequences for planet formation and evolution theories.
    Full-text · Article · Nov 2015 · Astronomy and Astrophysics
  • Yue Xiang · Shenghong Gu · A. Collier Cameron · J. R. Barnes · Liyun Zhang
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first Doppler images of the active eclipsing binary system SZ Psc, based on the high-resolution spectral data sets obtained in 2004 November and 2006 September–December. The least-squares deconvolution technique was applied to derive high signal-to-noise profiles from the observed spectra of SZ Psc. Absorption features contributed by a third component of the system were detected in the LSD profiles at all observed phases. We estimated the mass and period of the third component to be about 0.9 M⊙ and 1283 ± 10 d, respectively. After removing the contribution of the third body from the least-squares deconvolved profiles, we derived the surface maps of SZ Psc. The resulting Doppler images indicate significant star-spot activities on the surface of the K subgiant component. The distributions of star-spots are more complex than that revealed by previous photometric studies. The cooler K component exhibited pronounced high-latitude spots as well as numerous low- and intermediate-latitude spot groups during the entire observing seasons, but did not show any large, stable polar cap, different from many other active RS CVn-type binaries.
    No preview · Article · Nov 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the analysis of the entire HARPS observations of three stars that host planetary systems: HD1461, HD40307, and HD204313. The data set spans eight years and contains more than 200 nightly averaged velocity measurements for each star. This means that it is sensitive to both long-period and low-mass planets and also to the effects induced by stellar activity cycles. We modelled the data using Keplerian functions that correspond to planetary candidates and included the short- and long-term effects of magnetic activity. A Bayesian approach was taken both for the data modelling, which allowed us to include information from activity proxies such as $\log{(R'_{\rm HK})}$ in the velocity modelling, and for the model selection, which permitted determining the number of significant signals in the system. The Bayesian model comparison overcomes the limitations inherent to the traditional periodogram analysis. We report an additional super-Earth planet in the HD1461 system. Four out of the six planets previously reported for HD40307 are confirmed and characterised. We discuss the remaining two proposed signals. In particular, we show that when the systematic uncertainty associated with the techniques for estimating model probabilities are taken into account, the current data are not conclusive concerning the existence of the habitable-zone candidate HD40307 g. We also fully characterise the Neptune-mass planet that orbits HD204313 in 34.9 days.
    Full-text · Article · Oct 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We know now from radial velocity surveys and transit space missions that planets only a few times more massive than our Earth are frequent around solar-type stars. Fundamental questions about their formation history, physical properties, internal structure, and atmosphere composition are, however, still to be solved. We present here the detection of a system of four low-mass planets around the bright (V = 5.5) and close-by (6.5 pc) star HD 219134. This is the first result of the Rocky Planet Search programme with HARPS-N on the Telescopio Nazionale Galileo in La Palma. The inner planet orbits the star in 3.0935 ± 0.0003 days, on a quasi-circular orbit with a semi-major axis of 0.0382 ± 0.0003 AU. Spitzer observations allowed us to detect the transit of the planet in front of the star making HD 219134 b the nearest known transiting planet to date. From the amplitude of the radial velocity variation (2.25 ± 0.22 ms-1) and observed depth of the transit (359 ± 38 ppm), the planet mass and radius are estimated to be 4.36 ± 0.44 M⊕ and 1.606 ± 0.086 R⊕, leading to a mean density of 5.76 ± 1.09 g cm-3, suggesting a rocky composition. One additional planet with minimum-mass of 2.78 ± 0.65 M⊕ moves on a close-in, quasi-circular orbit with a period of 6.767 ± 0.004 days. The third planet in the system has a period of 46.66 ± 0.08 days and a minimum-mass of 8.94 ± 1.13 M⊕, at 0.233 ± 0.002 AU from the star. Its eccentricity is 0.46 ± 0.11. The period of this planet is close to the rotational period of the star estimated from variations of activity indicators (42.3 ± 0.1 days). The planetary origin of the signal is, however, thepreferred solution as no indication of variation at the corresponding frequency is observed for activity-sensitive parameters. Finally, a fourth additional longer-period planet of mass of 71 M⊕ orbits the star in 1842 days, on an eccentric orbit (e = 0.34 ± 0.17) at a distance of 2.56 AU.
    No preview · Article · Oct 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of two additional planetary companions to WASP-41 and WASP-47. WASP-41 c is a planet of minimum mass 3.18 $\pm$ 0.20 M$_{\rm Jup}$, eccentricity 0.29 $\pm$ 0.02 and orbiting in 421 $\pm$ 2 days. WASP-47 c is a planet of minimum mass 1.24 $\pm$ 0.22 M$_{\rm Jup}$, eccentricity 0.13 $\pm$ 0.10 and orbiting in 572 $\pm$ 7 days. Unlike most of the planetary systems including a hot Jupiter, these two systems with a hot Jupiter have a long period planet located at only $\sim$1 AU from their host star. WASP-41 is a rather young star known to be chromospherically active. To differentiate its magnetic cycle from the radial velocity effect due the second planet, we use the emission in the H$\alpha$ line and find this indicator well suited to detect the stellar activity pattern and the magnetic cycle. The analysis of the Rossiter-McLaughlin effect induced by WASP-41 b suggests that the planet could be misaligned, though an aligned orbit cannot be excluded. WASP-47 has recently been found to host two additional transiting super Earths. With such an unprecedented architecture, the WASP-47 system will be very important for the understanding of planetary migration.
    Full-text · Article · Sep 2015 · Astronomy and Astrophysics
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery by the WASP-South survey of three planets transiting moderately bright stars (V ~ 11). WASP-120b is a massive (5.0MJup) planet in a 3.6-day orbit that we find likely to be eccentric (e = 0.059+0.025-0.018) around an F5 star. WASP-122b is a hot-Jupiter (1.37MJup, 1.79RJup) in a 1.7-day orbit about a G4 star. Our predicted transit depth variation cause by the atmosphere of WASP-122b suggests it is well suited to characterisation. WASP-123b is a hot-Jupiter (0.92MJup, 1.33RJup) in a 3.0-day orbit around an old (~ 7 Gyr) G5 star.
    No preview · Article · Sep 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present here the detection of a system of four low-mass planets around the bright (V=5.5) and close-by (6.5 pc) star HD219134. This is the first result of the Rocky Planet Search program with HARPS-N on the TNG in La Palma. The inner planet orbits the star in 3.0937 +/-0.0004 days, on a quasi-circular orbit with a semi-major axis of 0.0382 +/- 0.0003 AU. Spitzer observations allowed us to detect the transit of the planet in front of the star making HD219134b the nearest known transiting planet to date. From the amplitude of the radial-velocity variation (2.33 +/- 0.24 m/s) and observed depth of the transit (359 +/- 38 ppm), the planet mass and radius are estimated to be 4.46 +/- 0.47 M_{\oplus} and 1.606 +/- 0.086 R_{\oplus} leading to a mean density of 5.89 +/- 1.17 g/cc, suggesting a rocky composition. One additional planet with minimum mass of 2.67 +/- 0.59 M_{\oplus} moves on a close-in, quasi-circular orbit with a period of 6.765 +/- 0.005 days. The third planet in the system has a period of 46.78 +/- 0.16 days and a minimum mass of 8.7 +/- 1.1 M{\oplus}, at 0.234 +/- 0.002 AU from the star. Its eccentricity is 0.32 +/- 0.14. The period of this planet is close to the rotational period of the star estimated from variations of activity indicators (42.3 +/- 0.1 days). The planetary origin of the signal is, however, the preferred solution as no indication of variation at the corresponding frequency is observed for activity-sensitive parameters. Finally, a fourth additional longer-period planet of mass of 62 +/- 6 M_{\oplus} orbits the star in 1190 days, on an eccentric orbit (e=0.27 +/- 0.11) at a distance of 2.14 +/- 0.27 AU.
    Full-text · Article · Jul 2015
  • Source

    Preview · Article · Jan 2015 · The European Physical Journal Conferences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of the transiting hot Jupiter exoplanet WASP-85Ab. Using a combined analysis of spectroscopic and photometric data, we determine that the planet orbits its host star every 2.66 days, and has a mass of 1.09+/-0.03 M_Jup and a radius of 1.44+/-0.02 R_Jup. The host star is of G5 spectral type, with magnitude V=11.2, and lies 125+/-80 pc distant. We find stellar parameters of T_eff=5685+/-65 K, super-solar metallicity ([Fe/H]=0.08+/-0.10), M_star=1.04+/-0.07 M_sun and R_star=0.96+/-0.13 R_sun. The system has a K-dwarf binary companion, WASP-85B, at a separation of approximately 1.5". The close proximity of this companion leads to contamination of our photometry, decreasing the apparent transit depth that we account for during our analysis. Without this correction, we find the depth to be 50 percent smaller, the stellar density to be 32 percent smaller, and the planet radius to be 18 percent smaller than the true value. Many of our radial velocity observations are also contaminated; these are disregarded when analysing the system in favour of the uncontaminated HARPS observations, as they have reduced semi-amplitudes that lead to underestimated planetary masses. We find a long-term trend in the binary position angle, indicating a misalignment between the binary and orbital planes. WASP observations of the system show variability with a period of 14.64 days, indicative of rotational modulation caused by stellar activity. Analysis of the Ca ii H+K lines shows strong emission that implies that both binary components are strongly active. We find that the system is likely to be less than a few Gyr old. WASP-85 lies in the field of view of K2 Campaign 1. Long cadence observations of the planet clearly show the planetary transits, along with the signature of stellar variability. Analysis of the K2 data, both long and short cadence, is ongoing.
    Full-text · Article · Dec 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exoplanet science is booming. In 20 years our knowledge has expanded considerably, from the first discovery of a Hot Jupiter, to the detection of a large population of Neptunes and super-Earths, to the first steps toward the characterization of exoplanet atmospheres. Between today and 2025, the field will evolve at an even faster pace with the advent of several space-based transit search missions, ground-based spectrographs, high-contrast imaging facilities, and the James Webb Space Telescope. Especially the ESA M-class PLATO mission will be a game changer in the field. From 2024 onwards, PLATO will find transiting terrestrial planets orbiting within the habitable zones of nearby, bright stars. These objects will require the power of Extremely Large Telescopes (ELTs) to be characterized further. The technique of ground-based high-resolution spectroscopy is establishing itself as a crucial pathway to measure chemical composition, atmospheric structure and atmospheric circulation in transiting exoplanets. A high-resolution spectrograph covering the visible and near-IR domains, mounted on the European ELT, will be able to detect molecules such as water vapour, carbon dioxide and oxygen in the atmospheres of habitable planets under favourable circumstances. E-ELT HiRES is the perfect ground-based match to the PLATO space mission and represents a unique opportunity for Europe to lead the world into the era of exploration of exoplanets with habitable conditions. HiRES will also be extremely complementary to other E-ELT planned instruments specialising in different kinds of planets, such as METIS and EPICS.
    Full-text · Article · Nov 2014
  • Source
    Yue Xiang · Shenghong Gu · A. Collier Cameron · J. R. Barnes
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Doppler images of both components of the eclipsing binary system ER Vul, based on the spectra obtained in 2004 November, 2006 September and 2008 November. The least-squares deconvolution technique is used for enhancing the signal-to-noise ratios of the observed profiles. The new surface images reveal that both stars of ER Vul show strong starspot activities and the starspots appear at various latitudes. The surface maps of 2006 and 2008 both show the presence of large high-latitude starspots on each component of ER Vul. We find no obvious phase shift of the active regions during our observations. The longitude distributions of starspots are non-uniform on both stars. At low-to-mid latitudes, the active regions are almost exclusively found in the hemisphere facing the other star. However, we find no pronounced concentration of spots at the sub-stellar points.
    Preview · Article · Nov 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of three new transiting hot Jupiters by WASP-South together with the TRAPPIST photometer and the Euler/CORALIE spectrograph. WASP-74b orbits a star of V = 9.7, making it one of the brighter systems accessible to Southern telescopes. It is a 0.95 M_Jup planet with a moderately bloated radius of 1.5 R_Jup in a 2-d orbit around a slightly evolved F9 star. WASP-83b is a Saturn-mass planet at 0.3 M_Jup with a radius of 1.0 R_Jup. It is in a 5-d orbit around a fainter (V = 12.9) G8 star. WASP-89b is a 6 M_Jup planet in a 3-d orbit with an eccentricity of e = 0.2. It is thus similar to massive, eccentric planets such as XO-3b and HAT-P-2b, except that those planets orbit F stars whereas WASP-89 is a K star. The V = 13.1 host star is magnetically active, showing a rotation period of 20.2 d, while star spots are visible in the transits. There are indications that the planet's orbit is aligned with the stellar spin. WASP-89 is a good target for an extensive study of transits of star spots.
    Full-text · Article · Oct 2014 · The Astronomical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the discoveries of six transiting hot Jupiters: WASP-87b, WASP-108b, WASP-109b, WASP-110b, WASP-111b and WASP-112b. The planets have masses of 0.51--2.2 $M_{\rm Jup}$ and radii of 1.19--1.44 $R_{\rm Jup}$ and are in orbits of 1.68--3.78 d around stars with masses 0.81--1.50 $M_{\rm \odot}$. WASP-111b is in a prograde, near-aligned ($\lambda = -5 \pm 16^\circ$), near-circular ($e < 0.10$ at 2 $\sigma$) orbit around a mid-F star. As tidal alignment around such a hot star is thought to be inefficient, this suggests that either the planet migrated inwards through the protoplanetary disc or that scattering processes happened to leave it in a near-aligned orbit. WASP-111 appears to have transitioned from an active to a quiescent state between the 2012 and 2013 seasons, which makes the system a candidate for studying the effects of variable activity on a hot-Jupiter atmosphere. We find evidence that the mid-F star WASP-87 is a visual binary with a mid-G star. Two host stars are metal poor: WASP-112 has [Fe/H] = $-0.64 \pm 0.15$ and WASP-87 has [Fe/H] = $-0.41 \pm 0.10$. The low density of WASP-112 (0.81 $M_{\rm \odot}$, $0.80 \pm 0.04$ $\rho_{\rm \odot}$) cannot be matched by standard models for any reasonable value of the age of the star, suggesting it to be affected by the "radius anomaly".
    Full-text · Article · Oct 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of two hot-Jupiter planets, each orbiting one of the stars of a wide binary system. WASP-94A (2MASS 20550794-3408079) is an F8 type star hosting a transiting planet with a radius of 1.72 +/- 0.06 R_Jup, a mass of 0.445 +/- 0.026 M_Jup, and an orbital period of 3.95 days. The Rossiter-McLaughlin effect is clearly detected, and the measured projected spin-orbit angle indicates that the planet occupies a retrograde orbit. WASP-94B (2MASS 20550915-3408078) is an F9 stellar companion at an angular separation of 15" (projected separation 2700 au), hosting a gas giant with a minimum mass of 0.617 +/- 0.028 M_Jup with a period of 2.008 days, detected by Doppler measurements. The orbital planes of the two planets are inclined relative to each other, indicating that at least one of them is inclined relative to the plane of the stellar binary. These hot Jupiters in a binary system bring new insights into the formation of close-in giant planets and the role of stellar multiplicity.
    Full-text · Article · Sep 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the sky-projected orbital obliquity (spin-orbit angle) of WASP-84b, a 0.70-$M_{\rm Jup}$ planet in a 8.52-day orbit around a G9V/K0V star, to be $\lambda = 0.3 \pm 1.7^\circ$. We obtain a true obliquity of $\psi = 14.8 \pm 8.0^\circ$ from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularised from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disc. This would make it the first short-orbit, giant planet to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars ($T_{\rm eff}$ < 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets.
    Full-text · Article · Sep 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the characterization of the Kepler-101 planetary system, thanks to a combined DE-MCMC analysis of Kepler data and forty radial velocities obtained with the HARPS-N spectrograph. This system was previously validated by Rowe et al. (2014) and is composed of a hot super-Neptune, Kepler-101b, and an Earth-sized planet, Kepler-101c. These two planets orbit the slightly evolved and metal-rich G-type star in 3.49 and 6.03 days, respectively. With mass $M_{\rm p}=51.1_{-4.7}^{+5.1}~M_{\oplus}$, radius $R_{\rm p}=5.77_{-0.79}^{+0.85}~R_{\oplus}$, and density $\rho_{\rm p}=1.45_{-0.48}^{+0.83} \rm g\;cm^{-3}$, Kepler-101b is the first fully-characterized super-Neptune, and its density suggests that heavy elements make up a significant fraction of its interior; more than $60\%$ of its total mass. Kepler-101c has a radius of $1.25_{-0.17}^{+0.19}~R_{\oplus}$, which implies the absence of any H/He envelope, but its mass could not be determined due to the relative faintness of the parent star for highly precise radial-velocity measurements ($K_{\rm p}=13.8$) and the limited number of radial velocities. The $1~\sigma$ upper limit, $M_{\rm p} < 3.8~M_{\oplus}$, excludes a pure iron composition with a $68.3\%$ probability. The architecture of the Kepler-101 planetary system - containing a close-in giant planet and an outer Earth-sized planet with a period ratio slightly larger than the 3:2 resonance - is certainly of interest for planet formation and evolution scenarios. This system does not follow the trend, seen by Ciardi et al. (2013), that in the majority of Kepler systems of planet pairs with at least one Neptune-size or larger planet, the larger planet has the longer period.
    Full-text · Article · Sep 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we derive the fundamental properties of 1SWASPJ011351.29+314909.7 (J0113+31), a metal-poor (-0.40 +/- 0.04 dex), eclipsing binary in an eccentric orbit (~0.3) with an orbital period of ~14.277 d. Eclipsing M dwarfs orbiting solar-type stars (EBLMs), like J0113+31, have been identified from WASP light curves and follow-up spectroscopy in the course of the transiting planet search. We present the first binary of the EBLM sample to be fully analysed, and thus, define here the methodology. The primary component with a mass of 0.945 +/- 0.045 Msun has a large radius (1.378 +/- 0.058 Rsun) indicating that the system is quite old, ~9.5 Gyr. The M-dwarf secondary mass of 0.186 +/- 0.010 Msun and radius of 0.209 +/- 0.011 Rsun are fully consistent with stellar evolutionary models. However, from the near-infrared secondary eclipse light curve, the M dwarf is found to have an effective temperature of 3922 +/- 42 K, which is ~600 K hotter than predicted by theoretical models. We discuss different scenarios to explain this temperature discrepancy. The case of J0113+31 for which we can measure mass, radius, temperature and metallicity, highlights the importance of deriving mass, radius and temperature as a function of metallicity for M dwarfs to better understand the lowest mass stars. The EBLM Project will define the relationship between mass, radius, temperature and metallicity for M dwarfs providing important empirical constraints at the bottom of the main sequence.
    Full-text · Article · Aug 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stellar flares, winds and coronal mass ejections form the space weather. They are signatures of the magnetic activity of cool stars and, since activity varies with age, mass and rotation, the space weather that extra-solar planets experience can be very different from the one encountered by the solar system planets. How do stellar activity and magnetism influence the space weather of exoplanets orbiting main-sequence stars? How do the environments surrounding exoplanets differ from those around the planets in our own solar system? How can the detailed knowledge acquired by the solar system community be applied in exoplanetary systems? How does space weather affect habitability? These were questions that were addressed in the splinter session "Cool stars and Space Weather", that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In this paper, we present a summary of the contributions made to this session.
    Full-text · Article · Aug 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report results of a spectropolarimetric and photometric monitoring of the weak-line T Tauri star LkCa4 within the MaTYSSE programme, involving ESPaDOnS at the Canada-France-Hawaii Telescope. Despite an age of only 2Myr and a similarity with prototypical classical T Tauri stars, LkCa4 shows no evidence for accretion and probes an interesting transition stage for star and planet formation. Large profile distortions and Zeeman signatures are detected in the unpolarized and circularly-polarized lines of LkCa4 using Least-Squares Deconvolution (LSD), indicating the presence of brightness inhomogeneities and magnetic fields at the surface of LkCa4. Using tomographic imaging, we reconstruct brightness and magnetic maps of LkCa4 from sets of unpolarized and circularly-polarized LSD profiles. The large-scale field is strong and mainly axisymmetric, featuring a ~2kG poloidal component and a ~1kG toroidal component encircling the star at equatorial latitudes - the latter making LkCa4 markedly different from classical TTauri stars of similar mass and age. The brightness map includes a dark spot overlapping the magnetic pole and a bright region at mid latitudes - providing a good match to the contemporaneous photometry. We also find that differential rotation at the surface of LkCa4 is small, typically ~5.5x weaker than that of the Sun, and compatible with solid-body rotation. Using our tomographic modelling, we are able to filter out the activity jitter in the RV curve of LkCa4 (of full amplitude 4.3km/s) down to a rms precision of 0.055km/s. Looking for hot Jupiters around young Sun-like stars thus appears feasible, even though we find no evidence for such planets around LkCa4.
    Full-text · Article · Aug 2014 · Monthly Notices of the Royal Astronomical Society

Publication Stats

8k Citations
1,174.83 Total Impact Points

Institutions

  • 1995-2014
    • University of St Andrews
      • School of Physics and Astronomy
      Saint Andrews, Scotland, United Kingdom
  • 2006-2013
    • Scottish Universities Physics Alliance
      Glasgow, Scotland, United Kingdom
  • 2011
    • Liverpool John Moores University
      • Astrophysics Research Institute
      Liverpool, England, United Kingdom
  • 2010
    • Keele University
      • Department of Physics and Astrophysics
      Newcastle-under-Lyme, England, United Kingdom
  • 1990-2006
    • University of Sussex
      • Astronomy Centre
      Brighton, ENG, United Kingdom
  • 2004
    • Andrews University
      Berrien Springs, Michigan, United States
  • 1998
    • Complutense University of Madrid
      • Department of Atomic, Molecular and Nuclear Physics
      Madrid, Madrid, Spain
    • Géosciences Environnement Toulouse - Observatoire Midi-Pyrénées
      Tolosa de Llenguadoc, Midi-Pyrénées, France
    • University of Helsinki
      Helsinki, Southern Finland Province, Finland
  • 1988-1992
    • University of Brighton
      Brighton, England, United Kingdom
    • University of Birmingham
      Birmingham, England, United Kingdom
  • 1986-1987
    • University of Cambridge
      Cambridge, England, United Kingdom