Michael Braun

University of Technology Munich, München, Bavaria, Germany

Are you Michael Braun?

Claim your profile

Publications (4)11.46 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: 12-ketoursodeoxycholic acid (12-keto-UDCA) is a key intermediate for the synthesis of ursodeoxycholic acid (UDCA), an important therapeutic agent for non-surgical treatment of human cholesterol gallstones and various liver diseases. The goal of this study is to develop a new enzymatic route for the synthesis 12-keto-UDCA based on a combination of NADPH-dependent 7β-hydroxysteroid dehydrogenase (7β-HSDH, EC and NADH-dependent 3α-hydroxysteroid dehydrogenase (3α-HSDH, EC In the presence of NADPH and NADH, the combination of these enzymes has the capacity to reduce the 3-carbonyl- and 7-carbonyl-groups of dehydrocholic acid (DHCA), forming 12-keto-UDCA in a single step. For cofactor regeneration, an engineered formate dehydrogenase, which is able to regenerate NADPH and NADH simultaneously, was used. All three enzymes were overexpressed in an engineered expression host Escherichia coli BL21(DE3)Δ7α-HSDH devoid of 7α-hydroxysteroid dehydrogenase, an enzyme indigenous to E. coli, in order to avoid formation of the undesired by-product 12-chenodeoxycholic acid in the reaction mixture. The stability of enzymes and reaction conditions such as pH value and substrate concentration were evaluated. No significant loss of activity was observed after 5 days under reaction condition. Under the optimal condition (10 mM of DHCA and pH 6), 99 % formation of 12-keto-UDCA with 91 % yield was observed.
    No preview · Article · Aug 2012 · Applied Microbiology and Biotechnology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ursodeoxycholic acid is an important pharmaceutical so far chemically synthesized from cholic acid. Various biocatalytic alternatives have already been discussed with hydroxysteroid dehydrogenases (HSDH) playing a crucial role. Several whole-cell biocatalysts based on a 7α-HSDH-knockout strain of Escherichia coli overexpressing a recently identified 7β-HSDH from Collinsella aerofaciens and a NAD(P)-bispecific formate dehydrogenase mutant from Mycobacterium vaccae for internal cofactor regeneration were designed and characterized. A strong pH dependence of the whole-cell bioreduction of dehydrocholic acid to 3,12-diketo-ursodeoxycholic acid was observed with the selected recombinant E. coli strain. In the optimal, slightly acidic pH range dehydrocholic acid is partly undissolved and forms a suspension in the aqueous solution. The batch process was optimized making use of a second-order polynomial to estimate conversion as function of initial pH, initial dehydrocholic acid concentration, and initial formate concentration. Complete conversion of 72 mM dehydrocholic acid was thus made possible at pH 6.4 in a whole-cell batch process within a process time of 1 h without cofactor addition. Finally, a NADH-dependent 3α-HSDH from Comamonas testosteroni was expressed additionally in the E. coli production strain overexpressing the 7β-HSDH and the NAD(P)-bispecific formate dehydrogenase mutant. It was shown that this novel whole-cell biocatalyst was able to convert 50 mM dehydrocholic acid directly to 12-keto-ursodeoxycholic acid with the formation of only small amounts of intermediate products. This approach may be an efficient process alternative which avoids the costly chemical epimerization at C-7 in the production of ursodeoxycholic acid.
    No preview · Article · May 2012 · Applied Microbiology and Biotechnology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reduction and oxidation of steroids in the human gut are catalyzed by hydroxysteroid dehydrogenases of microorganisms. For the production of 12-ketochenodeoxycholic acid (12-Keto-CDCA) from cholic acid the biocatalytic application of the 12α-hydroxysteroid dehydrogenase of Clostridium group P, strain C 48-50 (HSDH) is an alternative to chemical synthesis. However, due to the intensive costs the necessary cofactor (NADP(+) ) has to be regenerated. The alcohol dehydrogenase of Thermoanaerobacter ethanolicus (ADH-TE) was applied to catalyze the reduction of acetone while regenerating NADP(+) . A mechanistic kinetic model was developed for the process development of cholic acid oxidation using HSDH and ADH-TE. The process model was derived by identifying the parameters for both enzymatic models separately using progress curve measurements of batch processes over a broad range of concentrations and considering the underlying ordered bi-bi mechanism. Both independently derived kinetic models were coupled via mass balances to predict the production of 12-Keto-CDCA with HSDH and integrated cofactor regeneration with ADH-TE and acetone as co-substrate. The prediction of the derived model was suitable to describe the dynamics of the preparative 12-Keto-CDCA batch production with different initial reactant and enzyme concentrations. These datasets were used again for parameter identification. This led to a combined model which excellently described the reaction dynamics of biocatalytic batch processes over broad concentration ranges. Based on the identified process model batch process optimization was successfully performed in silico to minimize enzyme costs. By using 0.1 mM NADP(+) the HSDH concentration can be reduced to 3-4 µM and the ADH concentration to 0.4-0.6 µM to reach the maximal possible conversion of 100 mM cholic acid within 48 h. In conclusion, the identified mechanistic model offers a powerful tool for a cost-efficient process design.
    No preview · Article · Jun 2011 · Biotechnology and Bioengineering
  • Source

    Preview · Article · Sep 2010 · Chemie Ingenieur Technik