Michael A White

Fred Hutchinson Cancer Research Center, Seattle, Washington, United States

Are you Michael A White?

Claim your profile

Publications (105)972.68 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: CRISPR/Cas9 is an enabling RNA-guided technology for genome targeting and engineering. An acute DNA binding constraint of the Cas9 protein is the Protospacer Adjacent Motif (PAM). Here we demonstrate that the PAM requirement can be exploited to specifically target single-nucleotide heterozygous mutations while exerting no aberrant effects on the wild-type alleles. Specifically, we target the heterozygous G13A activating mutation of KRAS in colorectal cancer cells and we show reversal of drug resistance to a MEK small-molecule inhibitor. Our study introduces a new paradigm in genome editing and therapeutic targeting via the use of gRNA to guide Cas9 to a desired protospacer adjacent motif.
    No preview · Article · Jan 2016 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Motivation: Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Results: Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel. Availability and implementation: The clustering algorithm is implemented in Python and is freely available at https://bitbucket.org/youngjh/nsclc_paper. Contact: marcotte@icmb.utexas.edu SUPPLEMENTARY INFORMATION: Online-only supplementary material is available on the Bioinformatics web site.
    No preview · Article · Jan 2016 · Bioinformatics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large-scale molecular annotation of epithelial ovarian cancer (EOC) indicates remarkable heterogeneity in the etiology of that disease. This diversity presents a significant obstacle against intervention target discovery. However, inactivation of miRNA biogenesis is commonly associated with advanced disease. Thus, restoration of miRNA activity may represent a common vulnerability among diverse EOC oncogenotypes. To test this, we employed genome-scale, gain-of-function, miRNA mimic toxicity screens in a large, diverse spectrum of EOC cell lines. We found that all cell lines responded to at least some miRNA mimics, but that the nature of the miRNA mimics provoking a response was highly selective within the panel. These selective toxicity profiles were leveraged to define modes of action and molecular response indicators for miRNA mimics with tumor-suppressive characteristics in vivo. A mechanistic principle emerging from this analysis was sensitivity of EOC to miRNA-mediated release of cell fate specification programs, loss of which may be a prerequisite for development of this disease.
    Full-text · Article · Dec 2015 · Molecular Systems Biology

  • No preview · Article · Nov 2015 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endosomes, lysosomes and related catabolic organelles are a dynamic continuum of vacuolar structures that impact a number of cell physiological processes such as protein/lipid metabolism, nutrient sensing and cell survival. Here we develop a library of ultra-pH-sensitive fluorescent nanoparticles with chemical properties that allow fine-scale, multiplexed, spatio-temporal perturbation and quantification of catabolic organelle maturation at single organelle resolution to support quantitative investigation of these processes in living cells. Deployment in cells allows quantification of the proton accumulation rate in endosomes; illumination of previously unrecognized regulatory mechanisms coupling pH transitions to endosomal coat protein exchange; discovery of distinct pH thresholds required for mTORC1 activation by free amino acids versus proteins; broad-scale characterization of the consequence of endosomal pH transitions on cellular metabolomic profiles; and functionalization of a context-specific metabolic vulnerability in lung cancer cells. Together, these biological applications indicate the robustness and adaptability of this nanotechnology-enabled â detection and perturbation ' strategy.
    Full-text · Article · Oct 2015 · Nature Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TANK-binding kinase 1 (TBK1) is a serine/threonine protein kinase that plays a crucial role in innate immunity. Enhanced TBK1 function is associated with autoimmune diseases and cancer, implicating the potential benefit of therapeutically targeting TBK1. In this article, we examined a recently identified TBK1 inhibitor Compound II on treating autoimmune diseases. We found that Compound II is a potent and specific inhibitor of TBK1-mediated IFN response. Compound II inhibited polyinosinic-polycytidylic acid-induced immune activation in vitro and in vivo. Compound II treatment also ameliorated autoimmune disease phenotypes of Trex1(-/-) mice, increased mouse survival, and dampened the IFN gene signature in TREX1 mutant patient lymphoblasts. In addition, we found that TBK1 gene expression is elevated in systemic lupus erythematosus patient cells, and systemic lupus erythematosus cells with high IFN signature responded well to Compound II treatment. Together, our findings provided critical experimental evidence for inhibiting TBK1 with Compound II as an effective treatment for TREX1-associated autoimmune diseases and potentially other interferonopathies.
    Full-text · Article · Oct 2015 · The Journal of Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An efficient total synthesis of the potent V-ATPase inhibitor saliphenylhalamide (SaliPhe), a synthetic variant of the natural product salicylihalamide A (SaliA), has been accomplished aimed at facilitating the development of SaliPhe as an anticancer and antiviral agent. This new approach enabled facile access to derivatives for structure-activity relationship studies, leading to simplified analogs that maintain SaliPhe's biological properties. These studies will provide a solid foundation for the continued evaluation of SaliPhe and analogs as potential anticancer and antiviral agents.
    Full-text · Article · Sep 2015 · Bioorganic & medicinal chemistry letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major goal of cancer research is the identification of tumor-specific vulnerabilities that can be exploited for the development of therapies that are selectively toxic to the tumor. We show here that the transcriptional co-activators Peroxisome Proliferator-Activated Receptor Gamma Co-activator 1β (PGC1β) and Estrogen Related Receptor α (ERRα) are aberrantly expressed in human colon cell lines and tumors. With Kinase Suppressor of Ras 1 (KSR1) depletion as a reference standard, we used Fu nctional Si gnature On tology (FUSION) to identify the γ1 subunit of AMP-activated protein kinase (AMPK) as an essential contributor to PGC1β expression and colon tumor cell survival. Subsequent analysis revealed that a subunit composition of AMPK (α2β2γ1) is preferred for colorectal cancer cell survival, at least in part, by stabilizing the tumor-specific expression of PGC1β. In contrast, PGC1β and ERRα are not detectable in non-transformed human colon epithelial cells and depletion of the AMPK γ1 subunit has no effect on their viability. These data indicate that Ras oncogenesis relies on the aberrant activation of a PGC1β-dependent transcriptional pathway via a specific AMPK isoform.
    No preview · Article · Sep 2015 · Molecular and Cellular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The exocyst is a heterooctomeric complex well appreciated for its role in the dynamic assembly of specialized membrane domains. Accumulating evidence indicates that this macromolecular machine also serves as a physical platform that coordinates regulatory cascades supporting biological systems such as host defense signaling, cell fate, and energy homeostasis. The isolation of multiple components of the DNA damage response (DDR) as exocyst-interacting proteins, together with the identification of Sec8 as a suppressor of the p53 response, suggested functional interactions between the exocyst and the DDR. We found that exocyst perturbation resulted in resistance to ionizing radiation (IR) and accelerated resolution of DNA damage. This occurred at the expense of genomic integrity, as enhanced recombination frequencies correlated with the accumulation of aberrant chromatid exchanges. Sec8 perturbation resulted in the accumulation of ATF2 and RNF20 and the promiscuous accumulation of DDR-associated chromatin marks and Rad51 repairosomes. Thus, the exocyst supports DNA repair fidelity by limiting the formation of repair chromatin in the absence of DNA damage.
    No preview · Article · Aug 2015 · Molecular and Cellular Biology

  • No preview · Article · Aug 2015 · Cancer Research
  • Richard J Wang · Michael A White · Bret A Payseur
    [Show abstract] [Hide abstract]
    ABSTRACT: Hybrids between species are often sterile or inviable. This form of reproductive isolation is thought to evolve via the accumulation of mutations that interact to reduce fitness when combined in hybrids. Mathematical formulations of this "Dobzhansky-Muller model" predict an accelerating buildup of hybrid incompatibilities with divergence time (the "snowball effect"). Although the Dobzhansky-Muller model is widely accepted, the snowball effect has only been tested in two species groups. We evaluated evidence for the snowball effect in the evolution of hybrid male sterility among subspecies of house mice, a recently diverged group that shows partial reproductive isolation. We compared the history of subspecies divergence with patterns of quantitative trait loci (QTL) detected in F2 intercrosses between two pairs of subspecies (Mus musculus domesticus with M. m. musculus and M. m. domesticus with M. m. castaneus). We used a recently developed phylogenetic comparative method to statistically measure the fit of this data to the snowball prediction. To apply this method, QTL were partitioned as either shared or unshared in the two crosses. A heuristic partitioning based on the overlap of QTL confidence intervals produced unambiguous support for the snowball effect. An alternative approach combining data among crosses favored the snowball effect for the autosomes, but a linear accumulation of incompatibilities for the X chromosome. Reasoning that the X chromosome analyses are complicated by low mapping resolution, we conclude that hybrid male sterility loci have snowballed in house mice. Our study illustrates the power of comparative genetic mapping for understanding mechanisms of speciation. Copyright © 2015, The Genetics Society of America.
    No preview · Article · Jul 2015 · Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modern cancer treatment employs many effective chemotherapeutic agents originally discovered from natural sources. The cyclic depsipeptide didemnin B has demonstrated impressive anticancer activity in preclinical models. Clinical use has been approved but is limited by sparse patient responses combined with toxicity risk and an unclear mechanism of action. From a broad-scale effort to match antineoplastic natural products to their cellular activities, we found that didemnin B selectively induces rapid and wholesale apoptosis through dual inhibition of PPT1 and EEF1A1. Furthermore, empirical discovery of a small panel of exceptional responders to didemnin B allowed the generation of a regularized regression model to extract a sparse-feature genetic biomarker capable of predicting sensitivity to didemnin B. This may facilitate patient selection in a fashion that could enhance and expand the therapeutic application of didemnin B against neoplastic disease.
    Preview · Article · Apr 2015 · Nature Chemical Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic ductal adenocarcinoma (PDA) has a dismal prognosis and insights into both disease etiology and targeted intervention are needed. A total of 109 micro-dissected PDA cases were subjected to whole-exome sequencing. Microdissection enriches tumour cellularity and enhances mutation calling. Here we show that environmental stress and alterations in DNA repair genes associate with distinct mutation spectra. Copy number alterations target multiple tumour suppressive/oncogenic loci; however, amplification of MYC is uniquely associated with poor outcome and adenosquamous subtype. We identify multiple novel mutated genes in PDA, with select genes harbouring prognostic significance. RBM10 mutations associate with longer survival in spite of histological features of aggressive disease. KRAS mutations are observed in >90% of cases, but codon Q61 alleles are selectively associated with improved survival. Oncogenic BRAF mutations are mutually exclusive with KRAS and define sensitivity to vemurafenib in PDA models. High-frequency alterations in Wnt signalling, chromatin remodelling, Hedgehog signalling, DNA repair and cell cycle processes are observed. Together, these data delineate new genetic diversity of PDA and provide insights into prognostic determinants and therapeutic targets.
    Full-text · Article · Apr 2015 · Nature Communications
  • Source
    Michael A White · Jun Kitano · Catherine L Peichel
    [Show abstract] [Hide abstract]
    ABSTRACT: Sex chromosomes are subject to unique evolutionary forces that cause suppression of recombination, leading to sequence degeneration and the formation of heteromorphic chromosome pairs (i.e. XY or ZW). Although progress has been made in characterizing the outcomes of these evolutionary processes on vertebrate sex chromosomes, it is still unclear how recombination suppression and sequence divergence typically occur and how gene dosage imbalances are resolved in the heterogametic sex. The threespine stickleback fish (Gasterosteus aculeatus) is a powerful model system in which to explore vertebrate sex chromosome evolution, as it possesses an XY sex chromosome pair at relatively early stages of differentiation. Using a combination of whole-genome and transcriptome sequencing, we characterized sequence evolution and gene expression across the sex chromosomes. We uncovered two distinct evolutionary strata that correspond with known structural rearrangements on the Y chromosome. In the oldest stratum, only a handful of genes remain, and these genes are under strong purifying selection. By comparing sex-linked gene expression with expression of autosomal orthologs in an outgroup, we show dosage compensation has not evolved in threespine sticklebacks through upregulation of the X chromosome in males. Instead, in the oldest stratum, the genes that still possess a Y chromosome allele are enriched for genes predicted to be dosage sensitive in mammals and yeast. Our results suggest dosage imbalances may have been avoided at haploinsufficient genes by retaining function of the Y chromosome allele through strong purifying selection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
    Full-text · Article · Mar 2015 · Molecular Biology and Evolution
  • [Show abstract] [Hide abstract]
    ABSTRACT: AMP-activated protein kinase (AMPK) is a master sensor and regulator of cellular energy status. Upon metabolic stress, AMPK suppresses anabolic and promotes catabolic processes to regain energy homeostasis. Cancer cells can occasionally suppress the growth-restrictive AMPK pathway by mutation of an upstream regulatory kinase. Here, we describe a widespread mechanism to suppress AMPK through its ubiquitination and degradation by the cancer-specific MAGE-A3/6-TRIM28 ubiquitin ligase. MAGE-A3 and MAGE-A6 are highly similar proteins normally expressed only in the male germline but frequently re-activated in human cancers. MAGE-A3/6 are necessary for cancer cell viability and are sufficient to drive tumorigenic properties of non-cancerous cells. Screening for targets of MAGE-A3/6-TRIM28 revealed that it ubiquitinates and degrades AMPKα1. This leads to inhibition of autophagy, activation of mTOR signaling, and hypersensitization to AMPK agonists, such as metformin. These findings elucidate a germline mechanism commonly hijacked in cancer to suppress AMPK. Copyright © 2015 Elsevier Inc. All rights reserved.
    No preview · Article · Feb 2015 · Cell
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is the leading cause of cancer-related fatalities. Recent success developing genotypically-targeted therapies, with potency only in well-defined subpopulations of tumors, suggests a path to improving patient survival. We utilized a library of oligonucleotide inhibitors to microRNAs, a class of post-transcriptional gene regulators, to identify novel synthetic lethal interactions between miRNA inhibition and molecular mechanisms in NSCLC. Two inhibitors, those for miR-92a and miR-1226*, produced a toxicity distribution across a panel of 27 cell lines that correlated with loss of p53 protein expression. Notably, depletion of p53 was sufficient to confer sensitivity to otherwise resistant telomerase-immortalized bronchial epithelial cells. We found that both miR inhibitors cause sequence-specific down-regulation of the miR-17~92 polycistron, and this down-regulation was toxic only in the context of p53 loss. Mechanistic studies indicated the selective toxicity of miR-17~92 polycistron inactivation was the consequence of derepression of vitamin D signaling via suppression of CYP24A1; a rate limiting enzyme in the 1α,25-dihydroxyvitamin D3 metabolic pathway. Of note, high CYP24A1 expression significantly correlated with poor patient outcome in multiple lung cancer cohorts. Our results indicate that the screening approach utilized in this study can identify clinically relevant synthetic lethal interactions, and that vitamin D receptor agonists may show enhanced efficacy in p53-negative lung cancer patients. Copyright © 2014, American Association for Cancer Research.
    No preview · Article · Dec 2014 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KRAS mutation, which occurs in ∼95% of pancreatic ductal adenocarcinoma (PDA), has been shown to program tumor metabolism. MCT4 is highly upregulated in a subset of PDA with a glycolytic gene expression program and poor survival. Models with high levels of MCT4 preferentially employ glycolytic metabolism. Selectively in such "addicted" models, MCT4 attenuation compromised glycolytic flux with compensatory induction of oxidative phosphorylation and scavenging of metabolites by macropinocytosis and autophagy. In spite of these adaptations, MCT4 depletion induced cell death characterized by elevated reactive oxygen species and metabolic crisis. Cell death induced by MCT4-depletion was augmented by inhibition of compensatory pathways. In xenograft models, MCT4 had a significant impact on tumor metabolism and was required for rapid tumor growth. Together, these findings illustrate the metabolic diversity of PDA described by MCT4, delineate pathways through which this lactate transporter supports cancer growth, and demonstrate that PDA can be rationally targeted based on metabolic addictions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Full-text · Article · Dec 2014 · Cell Reports

  • No preview · Article · Dec 2014 · Molecular Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) have been shown to regulate viral infection, but the miRNAs that target intracellular sensors and adaptors of innate immunity have not been fully uncovered. Here we conduct an miRNA mimic screen and validation with miRNA inhibitors in cells infected with vesicular stomatitis virus (VSV) to identify miRNAs that regulate viral-host interactions. We identify miR-576-3p as a robust regulator of infection by VSV and other RNA and DNA viruses. While an miR-576-3p mimic sensitizes cells to viral replication, inhibition of endogenous miR-576-3p prevents infection. miR-576-3p is induced by IRF3 concomitantly with interferon and targets STING, MAVS and TRAF3, which are critical factors for interferon expression. Interestingly, miR-576-3p and its binding sites are primate-specific and miR-576-3p levels are reduced in inflammatory diseases. These findings indicate that induction of miR-576-3p by IRF3 triggers a feedback mechanism to reduce interferon expression and set an antiviral response threshold to likely avoid excessive inflammation.
    Full-text · Article · Sep 2014 · Nature Communications
  • Source
    Banu Eskiocak · Aktar Ali · Michael A White
    [Show abstract] [Hide abstract]
    ABSTRACT: XCT 790 is widely used to inhibit estrogen-related receptor alpha (ERRα) activity as an inverse agonist. Here, we report that XCT 790 potently activates AMP kinase (AMPK), in a dose-dependent and ERRα independent manner, with active concentrations more than 25-fold below those typically used to perturb ERRα. AMPK activation is secondary to inhibition of energy production as XCT 790 rapidly depletes cellular ATP. A concomitant increase in oxygen consumption rates suggests uncoupling of the mitochondrial electron transport chain. Consistent with this, XCT 790 decreased mitochondrial membrane potential without affecting mitochondrial mass. Therefore, XCT 790 is a potent, fast acting, mitochondrial uncoupler independent of its inhibition of ERRα. The biological activity together with structural features in common with the chemical uncouplers FCCP and CCCP indicate likely mode of action as a proton ionophore.
    Preview · Article · Jul 2014 · Biochemistry

Publication Stats

5k Citations
972.68 Total Impact Points


  • 2015
    • Fred Hutchinson Cancer Research Center
      Seattle, Washington, United States
  • 2009-2015
    • University of Wisconsin–Madison
      • Laboratory of Genetics
      Madison, Wisconsin, United States
  • 2002-2015
    • University of Texas at Dallas
      • Biochemistry
      Richardson, Texas, United States
  • 2001-2015
    • University of Texas Southwestern Medical Center
      • • Department of Cell Biology
      • • Department of Biochemistry
      Dallas, Texas, United States
  • 2000
    • Albert Einstein College of Medicine
      • Department of Developmental and Molecular Biology
      New York, New York, United States