Michel Félétou

The University of Hong Kong, Hong Kong, Hong Kong

Are you Michel Félétou?

Claim your profile

Publications (137)481.21 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic huanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2O2) now appears to play a dominat role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2-adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated confirming that the release of NO by the endothelial cell can chronically be up- (e.g. by estrogens, exercise and dietary factors) and down-regulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with aging and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively loose the pertussis-toxin sensitive pathway for NO release which favors vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2O2), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors (EDCF). Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, aging, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia) can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle. This article is protected by copyright. All rights reserved.
    No preview · Article · Dec 2015 · Acta Physiologica
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin-II and oxidative stress are involved in the genesis of aortic aneurysms, a phenomenon exacerbated by endothelial nitric oxide synthase (eNOS) deletion or uncoupling. The purpose of this work was to study the endothelial function in wild-type C57BL/6 (BL) and transgenic mice expressing the h-angiotensinogen and h-renin genes (AR) subjected to either a control, or a high-salt diet plus a treatment with a NO-synthase inhibitor, N-ω-nitro-L-arginine-methyl-ester (L-NAME; BLSL and ARSL). BLSL showed a moderate increase in blood pressure, while ARSL became severely hypertensive. Seventy-five percent of ARSL developed aortic aneurysms, characterized by major histo-morphological changes and associated with an increase in NADP(H) oxidase-2 (NOX2) expression. Contractile responses (KCl, norepinephrine, U-46619) were similar in the four groups of mice, and relaxations were not affected in BLSL and AR. However, in ARSL, endothelium-dependent relaxations (acetylcholine, UK-14304) were significantly reduced, and this dysfunction was similar in aortae without or with aneurysms. The endothelial impairment was unaffected by catalase, superoxide-dismutase mimetic, radical scavengers, cyclooxygenase inhibition, or TP-receptor blockade and could not be attributed to sGC oxidation. Thus, ARSL is a severe hypertension model developing aortic aneurysm. A vascular dysfunction, involving both endothelial (reduced role of NO) and smooth muscle cells, precedes aneurysms formation and, paradoxically, does not appear to involve oxidative stress.
    No preview · Article · Nov 2014 · Pflügers Archiv - European Journal of Physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to assess, in the murine kidney, the mechanisms underlying the endothelium-dependent control of vascular tone and whether or not, in a severe model of hypertension and renal failure, KCa channels contribute to its regulation. Wild-type (BL) and double-transgenic female mice expressing human angiotensinogen and renin (AR) genes received either control or a high-salt diet associated to a nitric oxide (NO) synthase inhibitor treatment (BLSL and ARSL). Changes in renal perfusion pressure (RPP) were measured in isolated perfused kidneys. BLSL and AR were moderately hypertensive without kidney disease while ARSL developed severe hypertension and renal failure. In the four groups, methacholine induced biphasic endothelium-dependent responses, a transient decrease in RPP followed by a cyclooxygenase-dependent increase in RPP. In the presence or not of indomethacin, the vasodilatations were poorly sensitive to NO synthase inhibition. However, in the presence of cyclooxygenase and NO synthase inhibitors, apamin, and/or TRAM-34, blockers of KCa2.3 and KCa3.1, respectively, abolished the decrease in RPP in response to either methacholine or the two activators of KCa2.3/KCa3.1, NS309, and SKA-31. Thus, KCa2/3 channels play a major role in the regulation of murine kidney perfusion and this mechanism is maintained in hypertension, even when severe and associated with kidney damage.
    No preview · Article · Jun 2014 · Pflügers Archiv - European Journal of Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipocalin-2 is a proinflammatory adipokine upregulated in obese humans and animals. A pathogenic role of lipocalin-2 in hypertension has been suggested. Mice lacking lipocalin-2 are protected from dietary obesity-induced cardiovascular dysfunctions. Administration of lipocalin-2 causes abnormal vasodilator responses in mice on a high-fat diet (HFD). Wild-type and lipocalin-2 knockout mice were fed with standard chow or HFD. Immunoassays were performed for evaluating the circulating and tissue contents of lipocalin-2. The relaxation and contraction of arteries were studied using a wire myograph. Blood pressure was monitored with implantable radio telemetry. Dietary obesity promoted the accumulation of lipocalin-2 protein in blood and arteries. Deficiency of this adipokine protected mice from dietary obesity-induced elevation of blood pressure. Mass spectrometry analysis revealed that human and murine lipocalin-2 were modified by polyamination. Polyaminated lipocalin-2 was rapidly cleared from the circulation. Adipose tissue was a major site for lipocalin-2 deamidation. The circulating levels and the arterial accumulation of deamidated lipocalin-2 were significantly enhanced by treatment with linoleic acid (18:2n-6), which bound to lipocalin-2 with high affinity and prevented its interactions with matrix metalloproteinase 9 (MMP9). Combined administration of linoleic acid with lipocalin-2 caused vascular inflammation and endothelial dysfunction and raised the blood pressure of mice receiving standard chow. A human lipocalin-2 mutant with cysteine 87 replaced by alanine (C87A) contained less polyamines and exhibited a reduced capacity to form heterodimeric complexes with MMP9. After treatment, C87A remained in the circulation for a prolonged period of time and evoked endothelial dysfunction in the absence of linoleic acid. Polyamination facilitates the clearance of lipocalin-2, whereas the accumulation of deamidated lipocalin-2 in arteries causes vascular inflammation, endothelial dysfunction, and hypertension.
    Full-text · Article · Mar 2014 · Journal of the American Heart Association
  • Source
    Antoine Bril · Michel Félétou

    Preview · Article · Feb 2014 · Medecine sciences: M/S
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of the present work was to elucidate the mechanisms underlying the endothelium-dependent and endothelium-independent components of the vascular relaxation induced by a water-soluble and ruthenium-based carbon monoxide (CO)-releasing agent, tricarbonylchloro(glycinato)ruthenium(II) (CORM-3). Changes in isometric tension and cyclic guanosine monophosphate (cGMP) production were measured in isolated aortic rings from normotensive Wistar-Kyoto rats. Nitric oxide (NO) generation was assessed in cultured human umbilical vein endothelial cells (HUVEC) by electron spin resonance. In rat aortic rings, CORM-3, but not the inactivated compound, iCORM, induced relaxations. In rings with but not in those without endothelium relaxations were partially inhibited by L-nitro-arginine (L-NA), 1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (ODQ), or hydroxocobalamin, inhibitors of NO-synthase, soluble guanylyl cyclase, and scavenger of NO, respectively. In rings with and without endothelium, deoxyhemoglobin abolished the relaxations. A combination of potassium channel blockers (barium, glibenclamide, and iberiotoxin) blunted the relaxation in rings without endothelium. CORM-3 produced an endothelium-dependent generation of cGMP that was inhibited by L-NA. CORM-3, but not iCORM, inhibited the endothelium-dependent relaxation to acetylcholine without affecting the response to sodium nitroprusside. In HUVEC, CORM-3 produced a concentration-dependent release of NO. Therefore, CORM-3-induced relaxations involve the soluble guanylyl cyclase-independent activation of smooth muscle potassium channels. Additionally, CO can produce concomitantly activation and inhibition of NO synthase, the former being responsible for the endothelium- and cGMP-dependent effect of CORM-3, the latter for the inhibition of acetylcholine-induced endothelium-dependent relaxations.
    No preview · Article · Jan 2013 · Archiv für Experimentelle Pathologie und Pharmakologie
  • Michel Félétou · Paul M Vanhoutte

    No preview · Article · Dec 2012 · Journal of cardiovascular pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND AND PURPOSE The purpose of the study was to investigate renal endothelium-dependent vasodilatation in a model of severe hypertension associated with kidney injury. EXPERIMENTAL APPROACH Changes in perfusion pressure were measured in isolated, perfused kidneys taken from 18-week-old Wistar-Kyoto rat (WKY), spontaneously hypertensive rats (SHR) and SHR treated for 2 weeks with N(ω) -nitro-L-arginine methyl ester in the drinking water (L-NAME-treated SHR, 6 mg·kg(-1) ·day(-1) ). KEY RESULTS Acetylcholine caused similar dose-dependent renal dilatation in the three groups. In vitro administration of indomethacin did not alter the vasodilatation, while the addition of N(w) -nitro-L-arginine (L-NA) produced a differential inhibition of the vasodilatation, (inhibition in WKY > SHR > L-NAME-treated SHR). Further addition of ODQ, an inhibitor of soluble guanylyl cyclase, abolished the responses to sodium nitroprusside but did not affect the vasodilatation to acetylcholine. However, the addition of TRAM-34 (or charybdotoxin) inhibitors of Ca(2+) -activated K(+) channels of intermediate conductance (K(Ca) 3.1), blocked the vasodilatation to acetylcholine, while apamin, an inhibitor of Ca(2+) -activated K(+) channels of small conductance (K(Ca) 2.3), was ineffective. Dilatation induced by an opener of K(Ca) 3.1/K(Ca) 2.3 channels, NS-309, was also blocked by TRAM-34, but not by apamin. The magnitude and duration of NS-309-induced vasodilatation and the renal expression of mRNA for K(Ca) 3.1, but not K(Ca) 2.3, channels followed the same ranking order (WKY < SHR < L-NAME-treated SHR). CONCLUSIONS AND IMPLICATIONS In SHR kidneys, an EDHF-mediated response, involving activation of K(Ca) 3.1 channels, contributed to the mechanism of endothelium-dependent vasodilatation. In kidneys from L-NAME-treated SHR, up-regulation of this pathway fully compensated for the decrease in NO availability.
    Full-text · Article · May 2012 · British Journal of Pharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial dysfunction is characterized by a decreased endothelial NO bioavailability and is evidenced by a reduced vasodilatory response to endothelial stimuli. It has been associated with major cardiovascular risk factors (hypercholesterolemia, hypertension, aging, diabetes.). Increasing NO supply, stimulating NO production, preventing NO degradation or substituting NO deficit are pharmacological opportunities which are described to restore NO bioavailability. At present, some drugs such as statins or ACEI have some of these properties. Unfortunately they do not completly prevent endothelial dysfunction. Therefore, new pharmacological tools targeting endothelial dysfunction are needed to improve patient prognosis. Original mechanisms of action within and/or beyond the NO pathway are not yet clinically available but preclinical models of endothelial dysfunction demonstrate new pharmacological opportunities.
    No preview · Article · May 2012 · Sang Thrombose Vaisseaux

  • No preview · Article · Mar 2012 · Journal des Maladies Vasculaires
  • Source
    Gillian Edwards · Michel Félétou · Arthur H Weston

    Preview · Article · Jan 2012 · Circulation Research
  • Michel Félétou · Ralf Köhler · Paul M Vanhoutte
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The present review first summarizes the complex chain of events, in endothelial and vascular smooth muscle cells, that leads to endothelium-dependent relaxations (vasodilatations) due to the generation of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) and how therapeutic interventions may improve the bioavailability of NO and thus prevent/cure endothelial dysfunction. Then, the role of other endothelium-derived mediators (endothelium-derived hyperpolarizing (EDHF) and contracting (EDCF) factors, endothelin-1) and signals (myoendothelial coupling) is summarized also, with special emphasis on their interaction(s) with the NO pathway, which make the latter not only a major mediator but also a key regulator of endothelium-dependent responses.
    No preview · Article · Sep 2011 · Annals of Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this review is to critically assess the evidence that neuropeptide Y (NPY) plays both an important role in the control of food intake and in the peripheral metabolic processes linked to the obese state. When given into the brain, NPY stimulates food intake and a variety of metabolic processes that promote fat deposition. The stimulation of food intake and body weight observed with chronic administration of the peptide is persistent and leads to obesity. Both the acute and chronic stimulation of food intake and body weight produced by NPY can be reproduced with selective NPY Y1 and Y5agonists. Therefore, there is no doubt that exogenously administered NPY is a potent regulator of appetite and could be involved in the development and maintenance of obesity. However, questions remain as to whether the increase in food intake produced by exogenous NPY represents a true hunger state or is mediated by unrelated behavioral changes. Although brain NPY levels and food intake are temporally related, attempts to demonstrate a change in food intake after blockade of endogenous NPY have been mixed. Furthermore, although some studies have shown a change in food intake after blockade of NPY the conclusion that this peptide plays an important role in the control of food intake is difficult to fully accept because of the nonselective nature of the inhibitors used. Based on the available evidence our conclusion is that NPY probably plays a role in the day-to- day control of food intake. However, NPY is not a critical regulator of food intake. In its absence appetite can be controlled by a variety of other hormones and neurotransmitters. However, a definitive answer to the role played by NPY in the control of food intake and peripheral metabolism awaits the development of clean and selective inhibitors. KeywordsNeuropeptide Y–Food intake–Obesity–NPY receptor knockout–NPY receptor antagonists–NPY antisense oligodeoxynucleotides–NPY antibodies
    No preview · Chapter · Jul 2011
  • Source
    Michel Félétou · Yu Huang · Paul M Vanhoutte
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelium-dependent contractions contribute to endothelial dysfunction in various animal models of aging, diabetes and cardiovascular diseases. In the spontaneously hypertensive rat, the archetypal model for endothelium-dependent contractions, the production of the endothelium-derived contractile factors (EDCF) involves an increase in endothelial intracellular calcium concentration, the production of reactive oxygen species, the predominant activation of cyclooxygenase-1 (COX-1) and to a lesser extent that of COX-2, the diffusion of EDCF towards the smooth muscle cells and the subsequent stimulation of their thromboxane A2-endoperoxide TP receptors. Endothelium-dependent contractions are also observed in various models of hypertension, aging and diabetes. They generally also involve the generation of COX-1- and/or COX-2-derived products and the activation of smooth muscle TP receptors. Depending on the model, thromboxane A(2), PGH(2), PGF(2α), PGE(2) and paradoxically PGI(2) can all act as EDCFs. In human, the production of COX-derived EDCF is a characteristic of the aging and diseased blood vessels, with essential hypertension causing an earlier onset and an acceleration of this endothelial dysfunction. As it has been observed in animal models, COX-1, COX-2 or both isoforms can contribute to these endothelial dysfunctions. Since in most cases, the activation of TP receptors is the common downstream effector, selective antagonists of this receptor should curtail endothelial dysfunction and be of therapeutic interest in the treatment of cardiovascular disorders.
    Preview · Article · Feb 2011 · British Journal of Pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thromboxane A(2) and the activation of TP receptors that it causes play an important role in platelet aggregation and therefore in thrombosis. However, TP receptors are also involved in the pathologies of the vascular wall including impaired endothelium-dependent vasodilation, increased oxidant generation, and increased expression of adhesion molecules. The beneficial effects of TP antagonists on the vascular wall attenuate these features of vascular disease. They are not shared by aspirin. In fact, TP antagonists are active in patients treated with aspirin, indicating that their potential beneficial effects are mediated by mechanisms different from the antithrombotic actions of aspirin. Our studies have demonstrated the vascular benefits of TP antagonists in experimental animals, particularly in models of diabetes mellitus, in which elevated levels of eicosanoids play a role not only in vascular pathologies but also in those of the kidney and other tissues. They suggest that TP blockade protects against fundamental and widespread tissular dysfunction associated with metabolic disease including hyperlipidemia and hyperglycemia. TP receptor antagonists represent a promising avenue for the prevention of vascular disease in part because of these pleiotropic actions that extend beyond their antithrombotic properties.
    Preview · Article · Dec 2010 · Advances in pharmacology (San Diego, Calif.)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of the present study was to determine whether a stimulator of soluble guanylyl cyclase, BAY 41-2272, inhibits platelet aggregation and to clarify its interaction with nitric oxide (NO). Blood was collected from anaesthetized Wistar Kyoto rats. The aggregation of washed platelets was measured and the production of cAMP and cGMP was determined. In adenosine 5'-diphosphate (ADP)-induced platelet aggregation, the anti-aggregating effects of BAY 41-2272, nitroglycerin, sodium nitroprusside and DEA-NONOate were associated with increased levels of cGMP while that of beraprost, a prostacyclin analogue, was correlated with an increase in cAMP. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) prevented the effects of BAY 41-2272 and that of nitroglycerin and sodium nitroprusside, but only inhibited the increase in cGMP produced by of DEA-NONOate. Hydroxocobalamin, an NO scavenger, inhibited the effects of the three NO donors and BAY 41-2272 but did not affect those of beraprost. ADP-induced aggregation and the effects of BAY 41-2272 were not affected by L-nitroarginine. A positive interaction was observed between BAY 41-2272 and the three NO donors. BAY 41-2272 potentiated also the anti-aggregating effects of beraprost, and again this potentiation was inhibited by hydroxocobalamin. Inhibition of platelet aggregation by BAY 41-2272 requires the reduced form of soluble guanylyl cyclase and the presence of NO. The positive interaction observed between BAY 41-2272 and various NO donors is qualitatively similar whatever the mechanism involved in NO release. Furthermore, a potent synergism is observed between BAY 41-2272 and a prostacyclin analogue, but only in the presence of NO.
    Full-text · Article · Nov 2010 · British Journal of Pharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of the present study was to determine whether an activator of soluble guanylyl cyclase (sGC), BAY 58-2667, inhibits platelet aggregation and to clarify its mechanism of action. Blood was collected from anesthetized WKY rats. The aggregation of washed platelet was measured and the production of cAMP and cGMP was determined. BAY 58-2667 produced a partial inhibition of the ADP- and collagen-induced platelet aggregation, but did not significantly affect thrombin-induced aggregation. In ADP-induced platelet aggregation, the inhibitory effects of BAY 58-2667 were associated with an increased level of both cGMP and cAMP while that of the prostacyclin analogue, beraprost, was correlated only with an increase in cAMP. The inhibitor of sGC, ODQ, enhanced the effects of BAY 58-2667. The presence of L-nitroarginine, an inhibitor of NO-synthase, hydroxocobalamin, a scavenger of NO, or that of three different NO-donors did not affect the anti-aggregating effect of BAY 58-2667. However, the anti-aggregating effects of beraprost were potentiated by BAY 58-2667. Therefore, the platelet inhibitory effects of BAY 58-2667 are associated with the generation of cGMP and a secondary increase in cAMP, both being totally NO-independent. When the sGC is oxidized, BAY 58-2667 becomes a relevant anti-aggregating agent, which synergizes with the cAMP-dependent pathway.
    No preview · Article · Oct 2010 · Vascular Pharmacology
  • Source
    Michel Félétou · Ralf Köhler · Paul M Vanhoutte
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial cells regulate vascular tone by releasing various contracting and relaxing factors including nitric oxide (NO), arachidonic acid metabolites (derived from cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases), reactive oxygen species, and vasoactive peptides. Additionally, another pathway associated with the hyperpolarization of the underlying smooth muscle cells plays a predominant role in resistance arteries. Endothelial dysfunction is a multifaceted disorder, which has been associated with hypertension of diverse etiologies, involving not only alterations of the L-arginine NO-synthase-soluble guanylyl cyclase pathway but also reduced endothelium-dependent hyperpolarizations and enhanced production of contracting factors, particularly vasoconstrictor prostanoids. This brief review highlights these different endothelial pathways as potential drug targets for novel treatments in hypertension and the associated endothelial dysfunction and end-organ damage.
    Preview · Article · Aug 2010 · Current Hypertension Reports
  • Gillian Edwards · Michel Félétou · Arthur H Weston
    [Show abstract] [Hide abstract]
    ABSTRACT: The term endothelium-derived hyperpolarising factor (EDHF) was introduced in 1987 to describe the hypothetical factor responsible for myocyte hyperpolarisations not associated with nitric oxide (EDRF) or prostacyclin. Two broad categories of EDHF response exist. The classical EDHF pathway is blocked by apamin plus TRAM-34 but not by apamin plus iberiotoxin and is associated with endothelial cell hyperpolarisation. This follows an increase in intracellular [Ca(2+)] and the opening of endothelial SK(Ca) and IK(Ca) channels preferentially located in caveolae and in endothelial cell projections through the internal elastic lamina, respectively. In some vessels, endothelial hyperpolarisations are transmitted to myocytes through myoendothelial gap junctions without involving any EDHF. In others, the K(+) that effluxes through SK(Ca) activates myocytic and endothelial Ba(2+)-sensitive K(IR) channels leading to myocyte hyperpolarisation. K(+) effluxing through IK(Ca) activates ouabain-sensitive Na(+)/K(+)-ATPases generating further myocyte hyperpolarisation. For the classical pathway, the hyperpolarising "factor" involved is the K(+) that effluxes through endothelial K(Ca) channels. During vessel contraction, K(+) efflux through activated myocyte BK(Ca) channels generates intravascular K(+) clouds. These compromise activation of Na(+)/K(+)-ATPases and K(IR) channels by endothelium-derived K(+) and increase the importance of gap junctional electrical coupling in myocyte hyperpolarisations. The second category of EDHF pathway does not require endothelial hyperpolarisation. It involves the endothelial release of factors that include NO, HNO, H(2)O(2) and vasoactive peptides as well as prostacyclin and epoxyeicosatrienoic acids. These hyperpolarise myocytes by opening various populations of myocyte potassium channels, but predominantly BK(Ca) and/or K(ATP), which are sensitive to blockade by iberiotoxin or glibenclamide, respectively.
    No preview · Article · Apr 2010 · Pflügers Archiv - European Journal of Physiology
  • Michel Félétou · Paul M Vanhoutte · Tony J Verbeuren
    [Show abstract] [Hide abstract]
    ABSTRACT: The stimulation of thromboxane/endoperoxide receptors (TP) elicits diverse physiological/pathophysiological reactions, including platelet aggregation and contraction of vascular smooth muscle. Furthermore, the activation of endothelial TP promotes the expression of adhesion molecules and favors adhesion and infiltration of monocytes/macrophages. In various cardiovascular diseases, endothelial dysfunction is predominantly the result of the release of endothelium-derived contracting factors that counteract the vasodilator effect of nitric oxide produced by the endothelial nitric oxide synthase. Endothelium-dependent contractions involve the activation of cyclooxygenases, the production of reactive oxygen species along with that of endothelium-derived contracting factors, which diffuse toward the vascular smooth muscle cells and activate their TP. TP antagonists curtail the endothelial dysfunction in diseases such as hypertension and diabetes, are potent antithrombotic agents, and reduce vascular inflammation. Therefore, TP antagonists, because of this triple activity, may have a unique potential for the treatment of cardiovascular disorders.
    No preview · Article · Apr 2010 · Journal of cardiovascular pharmacology

Publication Stats

8k Citations
481.21 Total Impact Points


  • 2006-2014
    • The University of Hong Kong
      • Department of Pharmacology and Pharmacy
      Hong Kong, Hong Kong
  • 1994-2013
    • Institut de France
      Lutetia Parisorum, Île-de-France, France
  • 1993-2002
    • Hôpital Ambroise Paré – Hôpitaux universitaires Paris Ile-de-France Ouest
      Billancourt, Île-de-France, France
  • 1991
    • Baylor College of Medicine
      Houston, Texas, United States
  • 1988
    • Mayo Clinic - Rochester
      • Department of Surgery
      Rochester, Minnesota, United States