Kathy H Ta

Louisiana State University in Shreveport, Shreveport, Louisiana, United States

Are you Kathy H Ta?

Claim your profile

Publications (1)0.94 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The stimulus for caspase-mediated renal cell apoptosis in septic acute renal failure (ARF) is unclear. To demonstrate the nephrotoxic effects of bacterial cell wall components, the anti-cellular activity of bacterial muropeptides (muramyl dipeptides), peptidoglycans, and lipopolysaccharides was investigated in rabbit kidney cells. Changes in the cell membrane (APOPercentage™ dye uptake), caspase activities, and DNA degradation were quantified colorimetrically and using densitometric assays and their inhibition by caspase-specific and pan-caspase inhibitors was determined. The onset and levels of APOPercentage™ dye-positive rabbit kidney cells, caspase activities, and DNA degradation were closely associated. Specific caspase-1, -2, -3, -4, -8, -10, and -12 inhibitors reduced caspase-3 activity by ≥40%, but only caspase-3 and -8-specific inhibitors reduced apoptotic DNA levels. Pan-caspase inhibitor Q-VD-OPh was 10-fold more effective at inhibiting rabbit kidney cell death, caspase activation, and DNA degradation than caspase-family inhibitor Z-VAD-FMK. Apoptosis was inhibited effectively by both pan-caspase inhibitors when applied early during the stimulus-to-response period. Multiple initiator and effector caspases were activated suggesting extrinsic, intrinsic, and endoplasmic reticulum/stress apoptotic pathway stimulation in rabbit kidney cells treated with bacterial cell wall components. The results provide in vitro support for bacterial cell wall-induced apoptosis as a pathogenic mechanism of renal cell death in septic ARF and support the potential prophylactic use of pan-caspase inhibitors to suppress septic ARF.
    Full-text · Article · Mar 2011 · Renal Failure