Eva Wuyts

Max Planck Institute for Extraterrestrial Physics, Arching, Bavaria, Germany

Are you Eva Wuyts?

Claim your profile

Publications (39)133.38 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze the angular momenta of massive star forming galaxies (SFGs) at the peak of the cosmic star formation epoch (z~0.8-2.6). Our sample of ~360 log(M*/Msun) ~ 9.3-11.8 SFGs is mainly based on the KMOS^3D and SINS/zC-SINF surveys of H\alpha\ kinematics, and collectively provides a representative subset of the massive star forming population. The inferred halo scale, angular momentum distribution is broadly consistent with that theoretically predicted for their dark matter halos, in terms of mean spin parameter <\lambda> ~ 0.037 and its dispersion ($\sigma_{log(\lambda)}$~0.2). Spin parameters correlate with the disk radial scale, and with their stellar surface density, but do not depend significantly on halo mass, stellar mass, or redshift. Our data thus support the long-standing assumption that on average the specific angular momentum of early disks reflects that of their dark matter halos (jd = jDM), despite the fact that gas enters the virial radius with substantially higher angular momentum, requiring subsequent angular momentum redistribution. The lack of correlation between \lambda x (jd/jDM) and the nuclear stellar density $\Sigma_{*}$(1kpc) favors that disk-internal angular momentum redistribution leads to "compaction" inside massive high-z disks. The average disk to dark halo mass ratio is ~5%, consistent with recent abundance matching results and implying that our high-z disks are strongly baryon dominated.
    Full-text · Article · Oct 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We measure C III] 1907,1909 A emission lines in eleven gravitationally--lensed star-forming galaxies at z~1.6--3, finding much lower equivalent widths than previously reported for fainter lensed galaxies (Stark et al. 2014). While it is not yet clear what causes some galaxies to be strong C III] emitters, CIII] emission is not a universal property of distant star-forming galaxies. We also examine C III] emission in 46 star-forming galaxies in the local universe, using archival spectra from GHRS, FOS, and STIS on HST, and IUE. Twenty percent of these local galaxies show strong C III] emission, with equivalent widths <-5 A. Three nearby galaxies show C III] emission equivalent widths as large as the most extreme emitters yet observed in the distant universe; all three are Wolf-Rayet galaxies. At all redshifts, strong C III] emission may pick out low-metallicity galaxies experiencing intense bursts of star formation. Such local C III] emitters may shed light on the conditions of star formation in certain extreme high-redshift galaxies.
    No preview · Article · Oct 2015
  • Eva Wuyts
    [Show abstract] [Hide abstract]
    ABSTRACT: The KMOS3D survey will provide near-IR IFU observations of a mass-selected sample of ∼600 star-forming galaxies at 0.7<z<2.7 with the K-band Multi Object Spectrograph (KMOS) at the VLT. We present kinematic results for a first sample of ∼200 galaxies, focusing on the evolution of the gas velocity dispersion with redshift. Combined with existing measurements, we find an approximate (1+z) evolution from z∼4 to the present day, which can be understood from the co-evolution of the gas fraction and specific star formation rate (sSFR) in the the equilibrium picture of galaxy evolution.We combine the KMOS3D sample with data from the LUCI and SINFONI spectrographs, as well as multi-wavelength HST imaging from CANDELS, to address the relations between stellar mass, SFR, and the [N II]/Hα flux ratio as an indicator of gas-phase metallicity for a sample of 222 star-forming galaxies. We find a constant slope at the low-mass end of the mass-metallicity relation and can fully describe its redshift evolution through the evolution of the characteristic turnover mass where the relation begins to flatten at the asymptotic metallicity. At a fixed mass and redshift, our data do not show a correlation between the [N II]/Hα ratio and SFR.
    No preview · Article · Jul 2015 · Proceedings of the International Astronomical Union
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M */M ☉) ≥ 10.9) z ~ 1-3 star-forming galaxies by increasing the sample size by a factor of six (to 44 galaxies above log(M */M ☉) ≥ 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS3Dspectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Hα, [N II], and [S II] lines ~450-5300 km s–1), with large [N II]/Hα ratios, above log(M */M ☉) ~ 10.9, with about two-thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z ~ 1 and ~2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGNs), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared, or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.
    Preview · Article · Oct 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the KMOS^3D survey, a new integral field survey of over 600 galaxies at 0.7<z<2.7 using KMOS at the Very Large Telescope (VLT). The KMOS^3D survey utilizes synergies with multi-wavelength ground and space-based surveys to trace the evolution of spatially-resolved kinematics and star formation from a homogeneous sample over 5 Gyrs of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass ($M_*$) and rest-frame $(U-V)-M_*$ planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first year of data we detect Halpha emission in 191 $M_*=3\times10^{9}-7\times10^{11}$ Msun galaxies at z=0.7-1.1 and z=1.9-2.7. In the current sample 83% of the resolved galaxies are rotation-dominated, determined from a continuous velocity gradient and $v_{rot}/\sigma>1$, implying that the star-forming 'main sequence' (MS) is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Halpha kinematic maps indicate at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous IFS studies at z>0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km/s at z~2.3 to 25 km/s at z~0.9 while the rotational velocities at the two redshifts are comparable. Combined with existing results spanning z~0-3, disk velocity dispersions follow an approximate (1+z) evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally-stable disk theory.
    Full-text · Article · Sep 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Star formation occurs on physical scales corresponding to individual star forming regions, typically of order ~100 parsecs in size, but current observational facilities cannot resolve these scales within field galaxies beyond the local universe. However, the magnification from strong gravitational lensing allows us to measure the properties of these discrete star forming regions within galaxies in the distant universe. New results from multi-wavelength spectroscopic studies of a sample of extremely bright, highly magnified lensed galaxies are revealing the complexity of star formation on sub-galaxy scales during the era of peak star formation in the universe. We find a wide range of properties in the rest-frame UV spectra of individual galaxies, as well as in spectra that originate from different star forming regions within the same galaxy. Large variations in the strengths and velocity structure of Lyman-alpha and strong P Cygni lines such as C IV, and MgII provide new insights into the astrophysical relationships between extremely massive stars, the elemental abundances and physical properties of the nebular gas those stars ionize, and the galactic-scale outflows they power.
    Preview · Article · Sep 2014 · Proceedings of the International Astronomical Union
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the correlations between stellar mass, star formation rate (SFR), and the [N II]/Hα flux ratio as an indicator of gas-phase metallicity for a sample of 222 galaxies at 0.8 < z < 2.6 and log (M */M ☉) = 9.0-11.5 from the LUCI, SINS/zC-SINF, and KMOS3D surveys. This sample provides a unique analysis of the mass-metallicity relation (MZR) over an extended redshift range using consistent data analysis techniques and a uniform strong-line metallicity indicator. We find a constant slope at the low-mass end of the relation and can fully describe its redshift evolution through the evolution of the characteristic turnover mass where the relation begins to flatten at the asymptotic metallicity. At a fixed mass and redshift, our data do not show a correlation between the [N II]/Hα ratio and SFR, which disagrees with the 0.2-0.3 dex offset in [N II]/Hα predicted by the "fundamental relation" between stellar mass, SFR, and metallicity discussed in recent literature. However, the overall evolution toward lower [N II]/Hα at earlier times does broadly agree with these predictions.
    Preview · Article · Jul 2014 · The Astrophysical Journal Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ~1 kpc in projection from one another, combining to an estimated total star formation rate of ~5 M ☉ yr–1. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arranged in a network spanning ~27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known "beads on a string" mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known "beads on a string" systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.
    Full-text · Article · Jul 2014 · The Astrophysical Journal Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the mass distribution at the core of SDSS J1531+3414, a strong-lensing cluster at z=0.335. We find that the mass distribution is well described by two cluster-scale halos with a contribution from cluster-member galaxies. New HST observations of SDSS J1531+3414 reveal a signature of ongoing star formation associated with the two central galaxies at the core of the cluster, in the form of a chain of star forming regions at the center of the cluster. Using the lens model presented here, we place upper limits on the contribution of a possible lensed image to the flux at the center region, and rule out that this emission is coming from a background source.
    Full-text · Article · Jul 2014 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examine the Mg II 2796, 2803 Å, Lyα, and nebular line emission in five bright star-forming galaxies at 1.66 < z < 1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lyα emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100-200 km s–1. When present, Lyα is even more redshifted. The reddest components of Mg II and Lyα emission have tails to 500-600 km s–1, implying a strong outflow. The lack of correlation in the Mg II and Lyα equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.
    No preview · Article · Jul 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examine the Mg II 2796, 2803 Angstrom, Lyman alpha, and nebular line emission in five bright star-forming galaxies at 1.66<z<1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lyman alpha emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100 to 200 km/s. When present, Lyman alpha is even more redshifted. The reddest components of Mg II and Lyman alpha emission have tails to 500-600 km/s, implying a strong outflow. The lack of correlation in the Mg II and Lyman alpha equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.
    Preview · Article · Jun 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M*/Msun) >= 10.9) z~1-3 star-forming galaxies (Forster Schreiber et al.), by increasing the sample size by a factor of six (to 44 galaxies above log(M*/Msun) >= 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS^3D spectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Ha, [NII], and [SII] lines ~ 450-5300 km/s), with large [NII]/Ha ratios, above log(M*/Msun) ~ 10.9, with 66+/-15% of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z~1 and ~2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGN), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.
    Full-text · Article · Jun 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the correlations between stellar mass, star formation rate (SFR) and [NII]/Ha flux ratio as indicator of gas-phase metallicity for a sample of 222 galaxies at 0.8 < z < 2.6 and log(M*/Msun)=9.0-11.5 observed with LUCI at the LBT, and SINFONI and KMOS at the VLT. This sample provides a unique analysis of the mass-metallicity relation (MZR) over an extended redshift range using consistent data analysis techniques and strong-line metallicity indicator. Over the redshift range probed, we find a constant slope at the low-mass end of the MZR, which is however significantly steeper than seen in the local Universe. In this range, we can fully describe the redshift evolution of the MZR through the evolution of the characteristic turnover mass where the relation begins to flatten at the asymptotic metallicity. At fixed mass and redshift, our data do not show a correlation between the [NII]/Ha ratio and SFR, which disagrees with the 0.2-0.3dex offset in [NII]/Ha predicted by the "fundamental relation" between stellar mass, SFR and metallicity discussed in recent literature. However, the MZR evolution towards lower [NII]/Ha at earlier times does agree within the uncertainties with these predictions.
    Full-text · Article · May 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a detailed analysis of Hubble Space Telescope (HST), Wide Field Camera 3 (WFC3) G141 grism spectroscopy for seven star-forming regions of the highly magnified lensed star- burst galaxy RCSGA 032727-132609 at z = 1.704. We measure the spatial variations of the extinction in RCS0327 through the observed H$\gamma$/H$\beta$ emission line ratios, finding a constant average extinction of $E(B-V)_{gas} = 0.40\pm0.07$. We infer that the star formation is enhanced as a result of an ongoing interaction, with measured star formation rates derived from demagnified, extinction-corrected Hbeta line fluxes for the individual star-forming clumps falling >1-2 dex above the star formation sequence. When combining the HST/WFC3 [OIII] $\lambda$5007/H$\beta$ emission line ratio measurements with [NII]/H$\alpha$ line ratios from Wuyts et al. (2014), we find that the majority of the individual star-forming regions fall along the local "normal" abundance sequence. With the first detections of the He I $\lambda$5876 $\AA$ and He II $\lambda$4686 $\AA$ recombination lines in a distant galaxy, we probe the massive-star content of the star-forming regions in RCS0327. The majority of the star-forming regions have a He I $\lambda$5876 to H$\beta$ ratio consistent with the saturated maximum value, which is only possible if they still contain hot O-stars. Two regions have lower ratios, implying that their last burst of new star formation ended $\sim5$ Myr ago. Together, the He I $\lambda$5876 $\AA$ and He II $\lambda$4686 $\AA$ to H$\beta$ line ratios provide indirect evidence for the order in which star formation is stopping in individual star-forming knots of this high redshift merger. We place the spatial variations of the extinction, star formation rate and ionization conditions in the context of the star formation history of RCS0327.
    Full-text · Article · May 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with peak luminosities ($L_{\rm iso} < 10^{48.5}~\rm{erg\,s}^{-1}$) substantially lower than the average of the more distant ones ($L_{\rm iso} > 10^{49.5}~\rm{erg\,s}^{-1}$). The properties of several low-luminosity (low-$L$) GRBs indicate that they can be due to shock break-out, as opposed to the emission from ultrarelativistic jets. Owing to this, it is highly debated how both populations are connected, and whether there is a continuum between them. The burst at redshift $z=0.283$ from 2012 April 22 is one of the very few examples of intermediate-$L$ GRBs with a $\gamma$-ray luminosity of $L\sim10^{48.9}~\rm{erg\,s}^{-1}$ that have been detected up to now. Together with the robust detection of its accompanying supernova SN 2012bz, it has the potential to answer important questions on the origin of low- and high-$L$ GRBs and the GRB-SN connection. We carried out a spectroscopy campaign using medium- and low-resolution spectrographs at 6--10-m class telescopes, covering the time span of 37.3 days, and a multi-wavelength imaging campaign from radio to X-ray energies over a duration of $\sim270$ days. Furthermore, we used a tuneable filter centred at H$\alpha$ to map star formation in the host galaxy and the surrounding galaxies. We used these data to extract and model the properties of different radiation components and incorporate spectral-energy-distribution fitting techniques to extract the properties of the host galaxy. Modelling the light curve and spectral energy distribution from the radio to the X-rays revealed the blast-wave to expand with an initial Lorentz factor of $\Gamma_0\sim60$, low for a high-$L$ GRB, and that the afterglow had an exceptional low peak luminosity-density of $\lesssim2\times10^{30}~\rm{erg\,s}^{-1}\,\rm{Hz}^{-1}$ in the sub-mm. [Abridged]
    Full-text · Article · Jan 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a detailed analysis of multi-wavelength Hubble Space Telescope/Wide Field Camera 3 (WFC3) imaging and Keck/OSIRIS near-infrared adaptive optics-assisted integral field spectroscopy for a highly magnified lensed galaxy at z = 1.70. This young starburst is representative of ultraviolet-selected star-forming galaxies (SFGs) at z ~ 2 and contains multiple individual star-forming regions. Due to the lensing magnification, we can resolve spatial scales down to 100 pc in the source plane of the galaxy. The velocity field shows disturbed kinematics suggestive of an ongoing interaction and there is a clear signature of a tidal tail. We constrain the age, reddening, star formation rate, and stellar mass of the star-forming clumps from spectral energy distribution (SED) modeling of the WFC3 photometry and measure their H? luminosity, metallicity, and outflow properties from the OSIRIS data. With strong star-formation-driven outflows in four clumps, RCSGA0327 is the first high-redshift SFG at stellar mass <1010M ? with spatially resolved stellar winds. We compare the H? luminosities, sizes, and dispersions of the star-forming regions with other high-z clumps as well as local giant H II regions and find no evidence for increased clump star formation surface densities in interacting systems, unlike in the local universe. Spatially resolved SED modeling unveils an established stellar population at the location of the largest clump and a second mass concentration near the edge of the system that is not detected in H? emission. This suggests a picture of an equal-mass mixed major merger, which has not triggered a new burst of star formation or caused a tidal tail in the gas-poor component.
    Full-text · Article · Dec 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection of ubiquitous powerful nuclear outflows in massive (> 10^11 Msun) z~2 star-forming galaxies (SFGs), which are plausibly driven by an Active Galactic Nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics (AO) assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Halpha and forbidden [NII] and [SII] line emission, with typical velocity FWHM ~ 1500 km/s, [NII]/Halpha ratio ~ 0.6, and intrinsic extent of 2 - 3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ~ 60 Msun/yr and mass loading of ~ 3. At larger radii, a weaker broad component is detected but with lower FWHM ~ 485 km/s and [NII]/Halpha ~ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles, and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial to confirm the importance and energetics of the nuclear outflow phenomenon, and its connection to AGN activity and bulge growth.
    Full-text · Article · Nov 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present optical and near-IR imaging and spectroscopy of SGAS J105039.6$+$001730, a strongly lensed galaxy at z $=$ 3.6252 magnified by $>$30$\times$, and derive its physical properties. We measure a stellar mass of log(M$_{*}$/M$_{\odot}$) $=$ 9.5 $\pm$ 0.35, star formation rates from [O II]$\lambda$$\lambda$3727 and H-$\beta$ of 55 $\pm$ 20 and 84 $\pm$ 17 M$_{\odot}$ yr$^{-1}$, respectively, an electron density of n$_{e} \leq$ 10$^{3}$ cm$^{-2}$, an electron temperature of T$_{e} \leq$ 14000 K, and a metallicity of 12+log(O/H) $=$ 8.3 $\pm$ 0.1. The strong C III]$\lambda$$\lambda$1907,1909 emission and abundance ratios of C, N, O and Si are consistent with well-studied starbursts at z $\sim$ 0 with similar metallicities. Strong P Cygni lines and He II$\lambda$1640 emission indicate a significant population of Wolf-Rayet stars, but synthetic spectra of individual populations of young, hot stars do not reproduce the observed integrated P Cygni absorption features. The rest-frame UV spectral features are indicative of a young starburst with high ionization, implying either 1) an ionization parameter significantly higher than suggest by rest-frame optical nebular lines, or 2) differences in one or both of the initial mass function and the properties of ionizing spectra of massive stars. We argue that the observed features are likely the result of a superposition of star forming regions with different physical properties. These results demonstrate the complexity of star formation on scales smaller than individual galaxies, and highlight the importance of systematic effects that result from smearing together the signatures of individual star forming regions within galaxies.
    Full-text · Article · Oct 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As part of the SINS/zC-SINF surveys of high-z galaxy kinematics, we derive the radial distributions of H-alpha surface brightness, stellar mass surface density, and dynamical mass at ~2 kpc resolution in 19 z~2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. From these data we infer the radial distribution of the Toomre Q-parameter for these main-sequence star forming galaxies (SFGs), covering almost two decades of stellar mass (10^9.6 to 10^11.5 solar masses). In more than half of our SFGs, the H-alpha distributions cannot be fit by a centrally peaked distribution, such as an exponential, but are better described by a ring, or the combination of a ring and an exponential. At the same time the kinematic data indicate the presence of a mass distribution more centrally concentrated than a single exponential distribution for 5 of the 19 galaxies. The resulting Q-distributions are centrally peaked for all, and significantly exceed unity there for three quarters of the SFGs. The occurrence of H-alpha rings and of large nuclear Q-values is strongly correlated, and is more common for the more massive SFGs. While our sample is small and there remain substantial uncertainties and caveats, our observations are consistent with a scenario in which cloud fragmentation and global star formation are secularly suppressed in gas rich high-z disks from the inside out, as the central stellar mass density of the disks grows.
    Full-text · Article · Oct 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We combine IRAM Plateau de Bure Interferometer and Herschel PACS and SPIRE measurements to study the dust and gas contents of high-redshift star-forming galaxies. We present new observations for a sample of 17 lensed galaxies at z = 1.4-3.1, which allow us to directly probe the cold interstellar medium of normal star-forming galaxies with stellar masses of ~1010M ☉, a regime otherwise not (yet) accessible by individual detections in Herschel and molecular gas studies. The lensed galaxies are combined with reference samples of submillimeter and normal z ~ 1-2 star-forming galaxies with similar far-infrared photometry to study the gas and dust properties of galaxies in the SFR-M *-redshift parameter space. The mean gas depletion timescale of main-sequence (MS) galaxies at z > 2 is measured to be only ~450 Myr, a factor of ~1.5 (~5) shorter than at z = 1 (z = 0), in agreement with a (1 + z)–1 scaling. The mean gas mass fraction at z = 2.8 is 40% ± 15% (44% after incompleteness correction), suggesting a flattening or even a reversal of the trend of increasing gas fractions with redshift recently observed up to z ~ 2. The depletion timescale and gas fractions of the z > 2 normal star-forming galaxies can be explained under the "equilibrium model" for galaxy evolution, in which the gas reservoir of galaxies is the primary driver of the redshift evolution of specific star formation rates. Due to their high star formation efficiencies and low metallicities, the z > 2 lensed galaxies have warm dust despite being located on the star formation MS. At fixed metallicity, they also have a gas-to-dust ratio 1.7 times larger than observed locally when using the same standard techniques, suggesting that applying the local calibration of the δGDR-metallicity relation to infer the molecular gas mass of high-redshift galaxies may lead to systematic differences with CO-based estimates.
    Preview · Article · Sep 2013 · The Astrophysical Journal

Publication Stats

372 Citations
133.38 Total Impact Points

Institutions

  • 2013-2015
    • Max Planck Institute for Extraterrestrial Physics
      Arching, Bavaria, Germany
  • 2014
    • The Catholic University of America
      • Department of Physics
      Washington, Washington, D.C., United States
  • 2010-2014
    • University of Chicago
      • • Kavli Institute for Cosmological Physics
      • • Department of Astronomy and Astrophysics
      Chicago, Illinois, United States
  • 2012-2013
    • University of Michigan
      • Department of Astronomy
      Ann Arbor, Michigan, United States