D. A. Morozova

Saint Petersburg State University, Sankt-Peterburg, St.-Petersburg, Russia

Are you D. A. Morozova?

Claim your profile

Publications (49)136.37 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present coordinated multiwavelength observations of the bright, nearby BL Lac object Mrk 421 taken in 2013 January-March, involving GASP-WEBT, Swift, NuSTAR, Fermi-LAT, MAGIC, VERITAS, and other collaborations and instruments, providing data from radio to very-high-energy (VHE) gamma-ray bands. NuSTAR yielded previously unattainable sensitivity in the 3-79 keV range, revealing that the spectrum softens when the source is dimmer until the X-ray spectral shape saturates into a steep power law with a photon index of approximately 3, with no evidence for an exponential cutoff or additional hard components up to about 80 keV. For the first time, we observed both the synchrotron and the inverse-Compton peaks of the spectral energy distribution (SED) simultaneously shifted to frequencies below the typical quiescent state by an order of magnitude. The fractional variability as a function of photon energy shows a double-bump structure which relates to the two bumps of the broadband SED. In each bump, the variability increases with energy which, in the framework of the synchrotron self-Compton model, implies that the electrons with higher energies are more variable. The measured multi-band variability, the significant X-ray-to-VHE correlation down to some of the lowest fluxes ever observed in both bands, the lack of correlation between optical/UV and X-ray flux, the low degree of polarization and its significant (random) variations, the short estimated electron cooling time, and the significantly longer variability timescale observed in the NuSTAR light curves point toward in-situ electron acceleration, and suggest that there are multiple compact regions contributing to the broadband emission of Mrk 421 during low-activity states.
    Full-text · Article · Dec 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on simultaneous broadband observations of the TeV-emitting blazar Markarian 501 between 1 April and 10 August 2013, including the first detailed characterization of the synchrotron peak with Swift and NuSTAR. During the campaign, the nearby BL Lac object was observed in both a quiescent and an elevated state. The broadband campaign includes observations with NuSTAR, MAGIC, VERITAS, the Fermi Large Area Telescope (LAT), Swift X-ray Telescope and UV Optical Telescope, various ground-based optical instruments, including the GASP-WEBT program, as well as radio observations by OVRO, Mets\"ahovi and the F-Gamma consortium. Some of the MAGIC observations were affected by a sand layer from the Saharan desert, and had to be corrected using event-by-event corrections derived with a LIDAR (LIght Detection And Ranging) facility. This is the first time that LIDAR information is used to produce a physics result with Cherenkov Telescope data taken during adverse atmospheric conditions, and hence sets a precedent for the current and future ground-based gamma-ray instruments. The NuSTAR instrument provides unprecedented sensitivity in hard X-rays, showing the source to display a spectral energy distribution between 3 and 79 keV consistent with a log-parabolic spectrum and hard X-ray variability on hour timescales. None (of the four extended NuSTAR observations) shows evidence of the onset of inverse-Compton emission at hard X-ray energies. We apply a single-zone equilibrium synchrotron self-Compton model to five simultaneous broadband spectral energy distributions. We find that the synchrotron self-Compton model can reproduce the observed broadband states through a decrease in the magnetic field strength coinciding with an increase in the luminosity and hardness of the relativistic leptons responsible for the high-energy emission.
    Full-text · Article · Oct 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present an analysis of the parsec-scale jet structure of the quasar 4C+21.35 with a resolution of 0.1 milliarcseconds based on 63 epochs of Very Long Baseline Array observations at 43 GHz from 2007 June to 2014 May along with the Fermi LAT γ-ray light curve and multi-frequency optical photometric and polarimetric data. We find that the innermost jet of the quasar consists of a very compact core of size ~0.03 mas, as well as feature A1 located 0.16 ± 0.03 mas from the core. The distance of A1 remains fairly stable, but its position angle with respect to the core changes from -10 to +10 deg. We detect 4 superluminal knots in the inner jet with apparent speeds ranging from 10c to 20c. The first two components appeared in the jet during the high γ-ray state of the quasar from mid-2010 to early 2011, while the fourth knot appears to be connected with the γ-ray active state in late 2013 - early 2014. The first knot can be associated with the dramatic VHE flare in 2010 June and possesses an extreme Doppler factor ~60. We find that maxima in the γ-ray light curve coincide with epochs of interaction between the moving knots and the core and feature A1. This suggests that the core and A1 are recollimation shocks where γ-ray flares occur. The Chandra 0.5-6 keV image reveals the existence of X-ray emission in the kiloparsec scale jet of the quasar that can be explained via inverse Compton scattering off the cosmic microwave background by relativistic electrons if no deceleration occurs between the parsec- and kiloparsec-scale jets.
    No preview · Article · Sep 2015 · Proceedings of the International Astronomical Union
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We perform a multi-wavelength polarimetric study of the quasar CTA 102 during an extraordinarily bright $\gamma$-ray outburst detected by the {\it Fermi} Large Area Telescope in September-October 2012 when the source reached a flux of F$_{>100~\mathrm{MeV}} =5.2\pm0.4\times10^{-6}$ photons cm$^{-2}$ s$^{-1}$. At the same time the source displayed an unprecedented optical and NIR outburst. We study the evolution of the parsec scale jet with ultra-high angular resolution through a sequence of 80 total and polarized intensity Very Long Baseline Array images at 43 GHz, covering the observing period from June 2007 to June 2014. We find that the $\gamma$-ray outburst is coincident with flares at all the other frequencies and is related to the passage of a new superluminal knot through the radio core. The powerful $\gamma$-ray emission is associated with a change in direction of the jet, which became oriented more closely to our line of sight ($\theta\sim$1.2$^{\circ}$) during the ejection of the knot and the $\gamma$-ray outburst. During the flare, the optical polarized emission displays intra-day variability and a clear clockwise rotation of EVPAs, which we associate with the path followed by the knot as it moves along helical magnetic field lines, although a random walk of the EVPA caused by a turbulent magnetic field cannot be ruled out. We locate the $\gamma$-ray outburst a short distance downstream of the radio core, parsecs from the black hole. This suggests that synchrotron self-Compton scattering of near-infrared to ultraviolet photons is the probable mechanism for the $\gamma$-ray production.
    Full-text · Article · Aug 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A multifrequency campaign on the BL Lac object PG 1553+113 was organized by the Whole Earth Blazar Telescope (WEBT) in 2013 April–August, involving 19 optical, two near-IR, and three radio telescopes. The aim was to study the source behaviour at low energies during and around the high-energy observations by the Major Atmospheric Gamma-ray Imaging Cherenkov telescopes in April–July. We also analyse the UV and X-ray data acquired by the Swift and XMM–Newton satellites in the same period. The WEBT and satellite observations allow us to detail the synchrotron emission bump in the source spectral energy distribution (SED). In the optical, we found a general bluer-when-brighter trend. The X-ray spectrum remained stable during 2013, but a comparison with previous observations suggests that it becomes harder when the X-ray flux increases. The long XMM–Newton exposure reveals a curved X-ray spectrum. In the SED, the XMM–Newton data show a hard near-UV spectrum, while Swift data display a softer shape that is confirmed by previous Hubble Space Telescope/Cosmic Origins Spectrograph and International Ultraviolet Explorer observations. Polynomial fits to the optical–X-ray SED show that the synchrotron peak likely lies in the 4–30 eV energy range, with a general shift towards higher frequencies for increasing X-ray brightness. However, the UV and X-ray spectra do not connect smoothly. Possible interpretations include: (i) orientation effects, (ii) additional absorption, (iii) multiple emission components, and (iv) a peculiar energy distribution of relativistic electrons. We discuss the first possibility in terms of an inhomogeneous helical jet model.
    Full-text · Article · Aug 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an analysis of the multiwavelength behaviour of the blazar OJ 248 at z = 0.939 in the period 2006–2013. We use low-energy data (optical, near-infrared, and radio) obtained by 21 observatories participating in the Gamma-Ray Large Area Space Telescope (GLAST)-AGILE Support Program of the Whole Earth Blazar Telescope, as well as data from the Swift (optical–UV and X-rays) and Fermi (γ-rays) satellites, to study flux and spectral variability and correlations among emissions in different bands. We take into account the effect of absorption by the Damped Lyman α intervening system at z = 0.525. Two major outbursts were observed in 2006–2007 and in 2012–2013 at optical and near-IR wavelengths, while in the high-frequency radio light curves prominent radio outbursts are visible peaking at the end of 2010 and beginning of 2013, revealing a complex radio–optical correlation. Cross-correlation analysis suggests a delay of the optical variations after the γ-ray ones of about a month, which is a peculiar behaviour in blazars. We also analyse optical polarimetric and spectroscopic data. The average polarization percentage P is less than 3 per cent, but it reaches ∼19 per cent during the early stage of the 2012–2013 outburst. A vague correlation of P with brightness is observed. There is no preferred electric vector polarization angle and during the outburst the linear polarization vector shows wide rotations in both directions, suggesting a complex behaviour/structure of the jet and possible turbulence. The analysis of 140 optical spectra acquired at the Steward Observatory reveals a strong Mg ii broad emission line with an essentially stable flux of 6.2 × 10− 15 erg cm− 2 s− 1 and a full width at half-maximum of 2053 km s− 1.
    Full-text · Article · Jul 2015 · Monthly Notices of the Royal Astronomical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: The results of multi-color photometric and polarization observations of the blazar S4 0954+658 carried out mainly in the Astronomical Institute of St. Petersburg State University and the Central Astronomical Observatory of the Russian Academy of Sciences in 2008-2012 are analyzed. Individual variable components that are responsible for the activity are distinguished; the power-law spectrum and high degree of polarization confirm that the emission is synchrotron radiation. Modeling the observed dependences between the parameters of the polarization and intensity is used to derive parameters of both the constant and the variable components of the radiation. The observed color variability (“the brighter, the bluer”) can be explained by the superposition of a red constant component and a bluer variable component with a constant relative spectral energy distribution.
    No preview · Article · Jun 2015 · Astronomy Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A flare from the TeV blazar Mrk 421, occurring in March 2010, was observed for 13 consecutive days from radio to very high energy (VHE; E > 100 GeV) gamma-rays with MAGIC, VERITAS, Whipple, FermiLAT, MAXI, RXTE, Swift, GASP-WEBT, and several optical and radio telescopes. We model the day-scale SEDs with one-zone and two-zone synchrotron self-Compton (SSC) models, investigate the physical parameters, and evaluate whether the observed broadband SED variability can be associated to variations in the relativistic particle population. Flux variability was remarkable in the X-ray and VHE bands while it was minor or not significant in the other bands. The one-zone SSC model can describe reasonably well the SED of each day for the 13 consecutive days. This flaring activity is also very well described by a two-zone SSC model, where one zone is responsible for the quiescent emission while the other smaller zone, which is spatially separated from the first one, contributes to the daily-variable emission occurring in X-rays and VHE gamma-rays. Both the one-zone SSC and the two-zone SSC models can describe the daily SEDs via the variation of only four or five model parameters, under the hypothesis that the variability is associated mostly to the underlying particle population. This shows that the particle acceleration and cooling mechanism producing the radiating particles could be the main one responsible for the broadband SED variations during the flaring episodes in blazars. The two-zone SSC model provides a better agreement to the observed SED at the narrow peaks of the low- and high-energy bumps during the highest activity, although the reported one-zone SSC model could be further improved by the variation of the parameters related to the emitting region itself ($\delta$, $B$ and $R$), in addition to the parameters related to the particle population.
    Full-text · Article · Dec 2014 · Astronomy and Astrophysics
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present results of 4 years of VLBA monitoring along with γ-ray and optical R-band photometric observations of 6 blazars (0420-014, 1156+295, 1222+216, PKS 1510-089, 1633+382 and CTA 102). We have analyzed total intensity images obtained with the VLBA at 43 GHz and investigated kinematic evolution of the pc-scale jets of the sources. For all sources we compare flux variations in the VLBI core and bright superluminal knots with γ-ray and optical light curves. The majority of γ-ray flares are coincident with the appearance of a new superluminal knot and/or a flare in the millimeter-wave core and at optical wavelengths. These results support the conclusion that for many flares in blazars the region of the enhanced γ-ray and optical emission is located in the vicinity or downstream of the mm-wave VLBI core.
    No preview · Article · Oct 2014 · Proceedings of the International Astronomical Union
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The blazar 1156+295 was active at γ-ray energies, exhibiting three prominent flares during the year 2010. Here, we present results using the combination of broad-band (X-ray through mm single-dish) monitoring data and radio-band imaging data at 43 GHz on the connection of γ-ray events to the ejections of superluminal components and other changes in the jet of 1156+295. The kinematics of the jet over the interval 2007.0–2012.5 using 43 GHz Very Long Baseline Array observations reveal the presence of four moving and one stationary component in the inner region of the blazar jet. The propagation of the third and fourth components in the jet corresponds closely in time to the active phase of the source in γ-rays. We briefly discuss the implications of the structural changes in the jet for the mechanism of γ-ray production during bright flares. To localize the γ-ray emission site in the blazar, we performed the correlation analysis between the 43 GHz radio core and the γ-ray light curve. The time lag obtained from the correlation constrains the γ-ray emitting region in the parsec-scale jet.
    Full-text · Article · Sep 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims. Amongst more than fifty blazars detected in very high energy (VHE, E > 100 GeV) gamma rays, only three belong to the subclass of flat spectrum radio quasars (FSRQs). The detection of FSRQs in the VHE range is challenging, mainly because of their soft spectra in the GeV-TeV regime. MAGIC observed PKS 1510-089 (z = 0.36) starting 2012 February 3 until April 3 during a high activity state in the high energy (HE, E > 100 MeV) gamma-ray band observed by AGILE and Fermi. MAGIC observations result in the detection of a source with significance of 6.0 standard deviations (sigma). We study the multi-frequency behaviour of the source at the epoch of MAGIC observation, collecting quasi-simultaneous data at radio and optical (GASP-WEBT and F-Gamma collaborations, REM, Steward, Perkins, Liverpool, OVRO, and VLBA telescopes), X-ray (Swift satellite), and HE gamma-ray frequencies. Methods. We study the VHE gamma-ray emission, together with the multi-frequency light curves, 43 GHz radio maps, and spectral energy distribution (SED) of the source. The quasi-simultaneous multi-frequency SED from the millimetre radio band to VHE gamma rays is modelled with a one-zone inverse Compton model. We study two different origins of the seed photons for the inverse Compton scattering, namely the infrared torus and a slow sheath surrounding the jet around the Very Long Baseline Array (VLBA) core. Results. We find that the VHE gamma-ray emission detected from PKS 1510-089 in 2012 February-April agrees with the previous VHE observations of the source from 2009 March-April. We find no statistically significant variability during the MAGIC observations on daily, weekly, or monthly time scales, while the other two known VHE FSRQs (3C 279 and PKS 1222+216) have shown daily scale to sub-hour variability. The gamma-ray SED combining AGILE, Fermi and MAGIC data joins smoothly and shows no hint of a break. The multi-frequency light curves suggest a common origin for the millimetre radio and HE gamma-ray emission, and the HE gamma-ray flaring starts when the new component is ejected from the 43GHz VLBA core and the studied SED models fit the data well. However, the fast HE gamma-ray variability requires that within the modelled large emitting region, more compact regions must exist. We suggest that these observed signatures would be most naturally explained by a turbulent plasma flowing at a relativistic speed down the jet and crossing a standing conical shock.
    Full-text · Article · Sep 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present $\gamma$-ray, X-ray, ultraviolet, optical, and near-infrared light curves of 33 $\gamma$-ray bright blazars over four years that we have been monitoring since 2008 August with multiple optical, ground-based telescopes and the Swift satellite, and augmented by data from the Fermi Gamma-ray Space Telescope and other publicly available data from Swift. The sample consists of 21 flat-spectrum radio quasars (FSRQs) and 12 BL Lac objects (BL Lacs). We identify quiescent and active states of the sources based on their $\gamma$-ray behavior. We derive $\gamma$-ray, X-ray, and optical spectral indices, $\alpha_\gamma$, $\alpha_X$, and $\alpha_o$, respectively ($F_\nu\propto\nu^\alpha$), and construct spectral energy distributions (SEDs) during quiescent and active states. We analyze the relationships between different spectral indices, blazar classes, and activity states. We find (i) significantly steeper $\gamma$-ray spectra of FSRQs than for BL Lacs during quiescent states, but a flattening of the spectra for FSRQs during active states while the BL Lacs show no significant change; (ii) a small difference of $\alpha_X$ within each class between states, with BL Lac X-ray spectra significantly steeper than in FSRQs; (iii) a highly peaked distribution of X-ray spectral slopes of FSRQs at $\sim-$0.60, but a very broad distribution of $\alpha_X$ of BL Lacs during active states; (iv) flattening of the optical spectra of FSRQs during quiescent states, but no statistically significant change of $\alpha_o$ of BL Lacs between states; and (v) a positive correlation between optical and $\gamma$-ray spectral slopes of BL Lacs, with similar values of the slopes. We discuss the findings with respect to the relative prominence of different components of high-energy and optical emission as the flux state changes.
    Full-text · Article · Jun 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of optical (R band) photometric and polarimetric monitoring and Very Long Baseline Array (VLBA) imaging of the blazar S4 0954+658, along with Fermi and gamma;-ray data during a multi-waveband outburst in 2011 March-April. After a faint state with a brightness level R ~17.6 mag registered in the first half of January 2011, the optical brightness of the source started to rise and reached ~14.8 mag during the middle of March, showing flare-like behavior. The most spectacular case of intranight variability was observed during the night of 2011 March 9, when the blazar brightened by ~0.7 mag within ~7 hours. During the rise of the flux the position angle of optical polarization rotated smoothly over more than 300$\deg$. At the same time, within 1$\sigma$ uncertainty a new superluminal knot appeared with an apparent speed of 19.0$\pm$0.3 c. We have very strong evidence for association of this knot with the multi-waveband outburst in 2011 March-April. We also analyze the multi-frequency behavior of S4 0954+658 during a number of minor outbursts from August 2008 to April 2012. We find some evidence of connections between at least two more superluminal ejecta and near-simultaneous optical flares.
    Full-text · Article · Jun 2014 · The Astronomical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the ongoing outburst of the young variable V1180 Cas, which is known to display characteristics in common with EXor eruptive variables. We present results that support the scenario of an accretion-driven nature of the brightness variations of the object and provide the first evidence of jet structures around the source. We monitored the recent flux variations of the target in the Rc, J, H, and K bands. New optical and near-IR spectra taken during the current high state of V1180 Cas are presented, in conjunction with H2 narrow-band imaging of the source. Observed near-IR colour variations are analogous to those observed in EXors and consistent with excess emission originating from an accretion event. The spectra show numerous emission lines, which indicates accretion, ejection of matter, and an active disc. Using optical and near-IR emission features we derive a mass accretion rate of ~3 E-8 Msun/yr, which is an order of magnitude lower than previous estimates. In addition, a mass loss rate of ~4 E-9 and ~4 E-10 Msun/yr are estimated from atomic forbidden lines and H2, respectively. Our H2 imaging reveals two bright knots of emission around the source and the nearby optically invisible star V1180 Cas B, clearly indicative of mass-loss phenomena. Higher resolution observations of the detected jet will help to clarify whether V1180 Cas is the driving source and to determine the relation between the observed knots.
    Full-text · Article · May 2014 · Astronomy and Astrophysics
  • V. M. Larionov · D. A. Morozova · E. N. Kopatskaya · D. A. Blinov
    [Show abstract] [Hide abstract]
    ABSTRACT: We perform optical photometric and polarimetric monitoring of flat spectrum radio quasar (FSRQ) PKS 1222+21 (4C 21.35, z=0.432) using 16" LX-200 telescope (St.Petersburg, Russia) and 70-cm AZT-8 (Crimea, Ukraine). During last month this quasar displays prominent activity. In the nights of 2014 February 24 and 25 it reached a level of R=13.86 and 13.80, correspondingly. These values can be compared to the quiescence level of R~15.7 recorded in 2012-2013.
    No preview · Article · Jan 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among more than fifty blazars detected in very high energy (VHE, E>100GeV) gamma-rays, only three belong to the subclass of Flat Spectrum Radio Quasars (FSRQs). MAGIC observed FSRQ PKS 1510-089 in February-April 2012 during a high activity state in the high energy (HE, E>100 MeV) gamma-ray band observed by AGILE and Fermi. MAGIC observations result in the detection of a source with significance of 6.0 sigma. In agreement with the previous VHE observations of the source, we find no statistically significant variability during the MAGIC observations in daily, weekly or monthly time scales. The other two known VHE FSRQs have shown daily scale to sub-hour variability. We study the multifrequency behaviour of the source at the epoch of MAGIC observation, collecting quasi-simultaneous data at radio and optical (GASP-WEBT and F-Gamma collaborations, REM, Steward, Perkins, Liverpool, OVRO and VLBA telescopes), X-ray (Swift satellite) and HE gamma-ray frequencies. The gamma-ray SED combining AGILE, Fermi and MAGIC data joins smoothly and shows no hint of a break. The multifrequency light curves suggest a common origin for the millimeter radio and HE gamma-ray emission and the HE gamma-ray flaring starts when the new component is ejected from the 43GHz VLBA core. The quasi-simultaneous multifrequency SED is modelled with a one-zone inverse Compton model. We study two different origins of the seed photons for the inverse Compton scattering, namely the infra-red torus and a slow sheath surrounding the jet around the VLBA core. Both models fit the data well. However, the fast HE gamma-ray variability requires that within the modelled large emitting region, there must exist more compact regions. We suggest that these observed signatures would be most naturally explained by a turbulent plasma flowing at a relativistic speed down the jet and crossing a standing conical shock.
    Full-text · Article · Jan 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the launch of the Fermi satellite, BL Lacertae has been moderately active at γ-rays and optical frequencies until 2011 May, when the source started a series of strong flares. The exceptional optical sampling achieved by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope in collaboration with the Steward Observatory allows us to perform a detailed comparison with the daily γ-ray observations by Fermi. Discrete correlation analysis between the optical and γ-ray emission reveals correlation with a time lag of 0 ± 1 d, which suggests cospatiality of the corresponding jet emitting regions. A better definition of the time lag is hindered by the daily gaps in the sampling of the extremely fast flux variations. In general, optical flares present more structure and develop on longer time-scales than corresponding γ-ray flares. Observations at X-rays and at millimetre wavelengths reveal a common trend, which suggests that the region producing the mm and X-ray radiation is located downstream from the optical and γ-ray-emitting zone in the jet. The mean optical degree of polarization slightly decreases over the considered period and in general it is higher when the flux is lower. The optical electric vector polarization angle (EVPA) shows a preferred orientation of about 15°, nearly aligned with the radio core EVPA and mean jet direction. Oscillations around it increase during the 2011-2012 outburst. We investigate the effects of a geometrical interpretation of the long-term flux variability on the polarization. A helical magnetic field model predicts an evolution of the mean polarization that is in reasonable agreement with the observations. These can be fully explained by introducing slight variations in the compression factor in a transverse shock waves model.
    Full-text · Article · Dec 2013 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze total and polarized intensity images of the quasar PKS 0420-014 obtained monthly with the VLBA at 43 GHz during 2008-2012 along with γ-ray data provided by the Fermi Large Area Telescope and multi-color photometric and polarimetric measurements collected by different optical telescopes. During this period the quasar underwent a number of optical flares, which were accompanied by rapid rotation of polarization angle, an increase of activity in γ-rays, and the appearance of new superluminal knots in the parsec-scale jet. We investigate the fine structure of the flares at different wavelengths and in polarized light, and determine kinematic parameters of the knots. We compare the rapid evolution of the optical polarization with the polarization of the VLBI core and knots. We interpret the multi-wavelength behavior within a model that places the blazar "dissipation zone" at the millimeter-wave core of the parsec-scale jet.
    Preview · Article · Dec 2013 · The European Physical Journal Conferences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After a few years of quiescence, the blazar CTA 102 underwent a large outburst in the fall of 2012. The flare has been tracked from γ-rays to near-infrared, including Fermi and Swift data as well as polarimetric data from several observatories. An intensive GASP-WEBT collaboration campaign in optical and NIR bands, with the addition of previously unpublished archival data, allows comparison of this outburst with the previous activity period of this blazar in the early 2000s. We find remarkable similarity between the optical and γ-ray behavior of CTA 102 during the outburst, without any time lag between the two light curves, indicating co-spatiality of the optical and γ-ray emission regions. A strong harder-when-brighter spectral dependence is seen both in γ-rays and optical. The polarimetric behavior of CTA 102 during the outburst conforms with a shock-in-jet interpretation.
    Preview · Article · Dec 2013 · The European Physical Journal Conferences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Fermi LAT detected an increase in γ-ray activity of the quasar 0836+710 (z=2.17) in Spring 2011 that culminated in a sharp γ-ray flare at the end of 2011 when the source reached a flux of 2.9×10-6 phot s-1cm-2 at 0.1-200 GeV. We monitor the quasar at optical wavelengths in photometric and polarimetric modes, at millimeter and centimeter wavelengths, and with the VLBA at 43 GHz. The optical brightness of the quasar increased by ~0.5 mag in R band and the degree of polarization oscillated between ~1% and ~6% during the highest γ-ray state, while the position angle of polarization rotated by ~300°. We have identified in the VLBA images a strong, highly polarized component that moves with an apparent speed of ~20 c. The component emerged from the core in the beginning of the γ-ray event and reached a flux maximum at the peak of the γ-ray outburst. We present the results of a correlative analysis of variations at different wavelengths along with the kinematic parameters of the parsec scale jet. We discuss the location of the high γ-ray emission in the relativistic jet, as well as the emission mechanisms responsible for γ-ray production.
    Preview · Article · Dec 2013 · The European Physical Journal Conferences

Publication Stats

428 Citations
136.37 Total Impact Points

Institutions

  • 2010-2015
    • Saint Petersburg State University
      Sankt-Peterburg, St.-Petersburg, Russia
    • INFN - Istituto Nazionale di Fisica Nucleare
      Frascati, Latium, Italy
  • 2010-2013
    • Boston University
      • Institute for Astrophysical Research
      Boston, Massachusetts, United States