Daniel C. Fabrycky

University of Chicago, Chicago, Illinois, United States

Are you Daniel C. Fabrycky?

Claim your profile

Publications (141)1003.05 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We infer dynamical masses in eight multi-planet systems using transit times measured from Kepler's complete dataset, including short-cadence data where available. Of the eighteen dynamical masses that we infer, ten pass multiple tests for robustness. These are in systems; Kepler-26 (KOI-250), Kepler-29 (KOI-738), Kepler-60 (KOI-2086), Kepler-105 (KOI-115), and Kepler-307 (KOI-1576). Kepler-105 c has a density consistent with an Earth-like composition. Strong TTV signals were detected from additional planets, but their inferred masses were sensitive to outliers or consistent solutions could not be found with independently-measured transit times, including planets at; Kepler-49 (KOI-248), Kepler-57 (KOI-1270), Kepler-105 (KOI-115) and Kepler-177 (KOI-523). Strong upper limits on the mass of Kepler-177 c imply an extremely low density ~0.1 g cm$^{-3}$. In most cases, individual orbital eccentricities were poorly constrained due to degeneracies in TTV inversion. For five planet pairs in our sample, strong secular interactions imply a moderate-to-high likelihood of apsidal alignment over a wide range of possible eccentricities. We also find solutions for the three planets known to orbit Kepler-60 in a Laplace-like resonance chain. However, non-librating solutions also match the transit-timing data. For six systems, we calculate more precise stellar parameters than previously known, enabling useful constraints on planetary densities where we have robust mass measurements. Placing these exoplanets on the mass-radius diagram, we find a wide range of densities is observed among sub-Neptune mass planets and that the range in observed densities is anti-correlated with incident flux.
    No preview · Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system KOI-2939 has a very long orbital period (~1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, KOI-2939b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With a radius of 1.06+/-0.01 RJup it is also the largest CBP to date. The planet produced three transits in the light-curve of KOI-2939 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass to be 1.52+/-0.65 MJup. The planet revolves around an 11-day period eclipsing binary consisting of two Solar-mass stars on a slightly inclined, mildly eccentric (e_bin = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth's, KOI-2939b is in the conservative habitable zone of the binary star throughout its orbit.
    Preview · Article · Dec 2015
  • Source
    Adam P. Sutherland · Daniel C. Fabrycky
    [Show abstract] [Hide abstract]
    ABSTRACT: Circumbinary planets whose orbits become unstable may be ejected, accreted, or even captured by one of the stars. We quantify the relative rates of these channels, for a binary of secondary star's mass fraction 0.1 with an orbit of 1AU. The most common outcome is ejection, which happens ~80% of the time. If binary systems form circumbinary planets readily and sloppily, this process may fill the Milky Way with free-floating planets. A significant fraction of the time, ~20%, the unstable planet strikes the primary or secondary. We tracked whether a Jupiter-like planet would undergo tidal stripping events during close passages, and find that these events are not strong enough to change the trajectory of the planet, though this may be observable from a changed structured for free-floating planets that are produced by this process.
    Preview · Article · Nov 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present new GPI observations of the young exoplanet 51 Eridani b which provide further evidence that the companion is physically associated with 51 Eridani. Combining this new astrometric measurement with those reported in the literature, we significantly reduce the posterior probability that 51 Eridani b is an unbound foreground or background T-dwarf in a chance alignment with 51 Eridani to $2\times10^{-7}$, an order of magnitude lower than previously reported. If 51 Eridani b is indeed a bound object, then we have detected orbital motion of the planet between the discovery epoch and the latest epoch. By implementing a computationally efficient Monte Carlo technique, preliminary constraints are placed on the orbital parameters of the system. The current set of astrometric measurements suggest an orbital semi-major axis of $14^{+7}_{-3}$ AU, corresponding to a period of $41^{+35}_{-12}$ yr (assuming a mass of $1.75$ M$_{\odot}$ for the central star), and an inclination of $138^{+15}_{-13}$ deg. The remaining orbital elements are only marginally constrained by the current measurements. These preliminary values suggest an orbit which does not share the same inclination as the orbit of the distant M-dwarf binary, GJ 3305, which is a wide physically bound companion to 51 Eridani.
    No preview · Article · Sep 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric composition and luminosity, which is influenced by their formation mechanism. Using the Gemini Planet Imager, we discovered a planet orbiting the \$sim$20 Myr-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water vapor absorption. Modeling of the spectra and photometry yields a luminosity of L/LS=1.6-4.0 x 10-6 and an effective temperature of 600-750 K. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold- start" core accretion process that may have formed Jupiter.
    Full-text · Article · Aug 2015 · Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery of Kepler-453 b, a 6.2 R' planet in a low-eccentricity, 240.5 day orbit about an eclipsing binary. The binary itself consists of a 0.94 and 0.195 M pair of stars with an orbital period of 27.32 days. The plane of the planet's orbit is rapidly precessing, and its inclination only becomes sufficiently aligned with the primary star in the latter portion of the Kepler data. Thus three transits are present in the second half of the light curve, but none of the three conjunctions that occurred during the first half of the light curve produced observable transits. The precession period is 103 years, and during that cycle, transits are visible only ∼8.9% of the time. This has the important implication that for every system like Kepler-453 that we detect, there are ∼11.5 circumbinary systems that exist but are not currently exhibiting transits. The planet's mass is too small to noticeably perturb the binary, and consequently its mass is not measurable with these data; however, our photodynamical model places a 1δ upper limit of 16 M. With a period 8.8 times that of the binary, the planet is well outside the dynamical instability zone. It does, however, lie within the habitable zone of the binary, making i the third of 10 Kepler circumbinary planets to do so. © 2015. The American Astronomical Society. All rights reserved.
    Full-text · Article · Aug 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favourable cases, the departures from Keplerian orbits (that is, unaffected by gravitational effects) implied by the observed transit times permit the planetary masses to be measured, which is key to determining their bulk densities. Characterizing rocky planets is particularly difficult, because they are generally smaller and less massive than gaseous planets. Therefore, few exoplanets near the size of Earth have had their masses measured. Here we report the sizes and masses of three planets orbiting Kepler-138, a star much fainter and cooler than the Sun. We determine that the mass of the Mars-sized inner planet, Kepler-138 b, is 0.066(+0.059)(-0.037) Earth masses. Its density is 2.6(+2.4)(-1.5) grams per cubic centimetre. The middle and outer planets are both slightly larger than Earth. The middle planet's density (6.2(+5.8)(-3.4) grams per cubic centimetre) is similar to that of Earth, and the outer planet is less than half as dense at 2.1(+2.2)(-1.2) grams per cubic centimetre, implying that it contains a greater portion of low-density components such as water and hydrogen.
    No preview · Article · Jun 2015 · Nature
  • Source
    David V. Martin · Tsevi Mazeh · Daniel C. Fabrycky
    [Show abstract] [Hide abstract]
    ABSTRACT: The Kepler mission has yielded the discovery of eight circumbinary systems, all found around eclipsing binaries with periods greater than 7 d. This is longer than the typical eclipsing binary period found by Kepler, and hence there is a dearth of planets around the closest binaries. In this paper, we suggest how this dearth may be explained by the presence of a distant stellar tertiary companion, which shrunk the inner binary orbit by the process of Kozai cycles and tidal friction, a mechanism that has been implicated for producing most binaries with periods below 7 d. We show that the geometry and orbital dynamics of these evolving triple star systems are highly restrictive for a circumbinary planet, which is subject itself to Kozai modulation, on one hand, and can shield the two inner stars from their Kozai cycle and subsequent shrinking, on the other hand. Only small planets on wide and inclined orbits may form, survive and allow for the inner binary shrinkage. Those are difficult to detect.
    Preview · Article · May 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    Gwenaël Boué · Daniel C. Fabrycky
    [Show abstract] [Hide abstract]
    ABSTRACT: The stellar spin orientation relative to the orbital planes of multiplanet systems are becoming accessible to observations. For example, 55 Cancri is a system composed of 5 planets orbiting a member of a stellar binary for which a projected obliquity of 72+-12 deg relative to the orbit of the innermost planet has been reported (Bourrier & Hebrard 2014). This large obliquity has been attributed to the perturbation induced by the binary. Here we describe the secular evolution of similar systems and we discuss the case of the 55 Cancri system more deeply. We provide two different orbital configurations compatible with the currently available observations.
    Preview · Article · Oct 2014 · Proceedings of the International Astronomical Union
  • Source
    Joshua N. Winn · Daniel C. Fabrycky
    [Show abstract] [Hide abstract]
    ABSTRACT: The basic geometry of the Solar System -- the shapes, spacings, and orientations of the planetary orbits -- has long been a subject of fascination as well as inspiration for planet formation theories. For exoplanetary systems, those same properties have only recently come into focus. Here we review our current knowledge of the occurrence of planets around other stars, their orbital distances and eccentricities, the orbital spacings and mutual inclinations in multiplanet systems, the orientation of the host star's rotation axis, and the properties of planets in binary-star systems.
    Preview · Article · Oct 2014 · Annual Review of Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The detection of small planets orbiting nearby stars is an important step towards the identification of Earth twins. In previous work using the Spitzer Space Telescope, we found evidence to support at least one sub-Earth-sized exoplanet orbiting the nearby mid-M dwarf star GJ 436. As a follow up, here we used the Hubble Space Telescope to investigate the existence of one of these candidate planets, UCF-1.01, by searching for two transit signals as it passed in front of its host star. Interpretation of the data hinges critically on correctly modeling and removing the WFC3 instrument systematics from the light curves. Building on previous HST work, we demonstrate that WFC3 analyses need to explore the use of a quadratic function to fit a visit-long time-dependent systematic. This is important for establishing absolute transit and eclipse depths in the white light curves of all transiting systems. The work presented here exemplifies this point by putatively detecting the primary transit of UCF-1.01 with the use of a linear trend. However, using a quadratic trend, we achieve a better fit to the white light curves and a reduced transit depth that is inconsistent with previous Spitzer measurements. Furthermore, quadratic trends with or without a transit model component produce comparable fits to the available data. Using extant WFC3 transit light curves for GJ436b, we further validate the quadratic model component by achieving photon-limited model fit residuals and consistent transit depths over multiple epochs. We conclude that, when we fit for a quadratic trend, our new data contradict the prediction of a sub-Earth-sized planet orbiting GJ 436 with the size, period, and ephemeris posited from the Spitzer data by a margin of 3.1{\sigma}.
    Preview · Article · Sep 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery of KIC 9632895b, a 6.2 Earth-radius planet in a low-eccentricity, 240.5-day orbit about an eclipsing binary. The binary itself consists of a 0.93 and 0.194 solar mass pair of stars with an orbital period of 27.3 days. The plane of the planet's orbit is rapidly precessing, and its inclination only becomes sufficiently aligned with the primary star in the latter portion of the Kepler data. Thus three transits are present in the latter half of the light curve, but none of the three conjunctions that occurred during the first half of the light curve produced transits. The precession period is ~103 years, and during that cycle, transits are visible only ~8% of the time. This has the important implication that for every system like KIC 9632895 that we detect, there are ~12 circumbinary systems that exist but are not currently exhibiting transits. The planet's mass is too small to noticeably perturb the binary, consequently its mass is not measurable with these data; but our photodynamical model places a 1-sigma upper limit of 16 Earth masses. With a period 8.8 times that of the binary, the planet is well outside the dynamical instability zone. It does, however, lie within the habitable zone of the binary, and making it the third of ten Kepler circumbinary planets to do so.
    Full-text · Article · Sep 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of both laboratory and on sky astrometric characterization of the Gemini Planet Imager (GPI). This characterization includes measurement of the pixel scale of the integral field spectrograph (IFS), the position of the detector with respect to north, and optical distortion. Two of these three quantities (pixel scale and distortion) were measured in the laboratory using two transparent grids of spots, one with a square pattern and the other with a random pattern. The pixel scale in the laboratory was also estimate using small movements of the artificial star unit (ASU) in the GPI adaptive optics system. On sky, the pixel scale and the north angle are determined using a number of known binary or multiple systems and Solar System objects, a subsample of which had concurrent measurements at Keck Observatory. Our current estimate of the GPI pixel scale is 14.14 $\pm$ 0.01 millarcseconds/pixel, and the north angle is -1.00 $\pm$ 0.03$\deg$. Distortion is shown to be small, with an average positional residual of 0.26 pixels over the field of view, and is corrected using a 5th order polynomial. We also present results from Monte Carlo simulations of the GPI Exoplanet Survey (GPIES) assuming GPI achieves ~1 milliarcsecond relative astrometric precision. We find that with this precision, we will be able to constrain the eccentricities of all detected planets, and possibly determine the underlying eccentricity distribution of widely separated Jovians.
    Full-text · Article · Jul 2014
  • Gwenaël Boué · Daniel C. Fabrycky
    [Show abstract] [Hide abstract]
    ABSTRACT: The stellar spin orientation relative to the orbital planes of multiplanet systems is becoming accessible to observations. Here, we analyze and classify different types of spin-orbit evolution in compact multiplanet systems perturbed by an inclined outer companion. Our study is based on classical secular theory, using a vectorial approach developed in a separate paper. When planet-planet perturbations are truncated at the second order in eccentricity and mutual inclination, and the planet-companion perturbations are developed at the quadrupole order, the problem becomes integrable. The motion is composed of a uniform precession of the whole system around the total angular momentum, and in the rotating frame, the evolution is periodic. Here, we focus on the relative motion associated with the oscillations of the inclination between the planet system and the outer orbit and of the obliquities of the star with respect to the two orbital planes. The solution is obtained using a powerful geometric method. With this technique, we identify four different regimes characterized by the nutation amplitude of the stellar spin axis relative to the orbital plane of the planets. In particular, the obliquity of the star reaches its maximum when the system is in the Cassini regime where planets have more angular momentum than the star and where the precession rate of the star is similar to that of the planets induced by the companion. In that case, spin-orbit oscillations exceed twice the inclination between the planets and the companion. Even if the mutual inclination is only 20°, this resonant case can cause the spin-orbit angle to oscillate between perfectly aligned and retrograde values.
    No preview · Article · Jun 2014 · The Astrophysical Journal
  • Gwenaël Boué · Daniel C. Fabrycky
    [Show abstract] [Hide abstract]
    ABSTRACT: The non-resonant secular dynamics of compact planetary systems are modeled by a perturbing function that is usually expanded in eccentricity and absolute inclination with respect to the invariant plane. Here, the expressions are given in a vectorial form which naturally leads to an expansion in eccentricity and mutual inclination. The two approaches are equivalent in most cases, but the vectorial one is specially designed for those cases where an entire quasi-coplanar system tilts to a large degree. Moreover, the vectorial expressions of the Hamiltonian and of the equations of motion are slightly simpler than those given in terms of the usual elliptical elements. We also provide the secular perturbing function in vectorial form expanded in semi-major axis ratio allowing for arbitrary eccentricities and inclinations. The interaction between the equatorial bulge of a central star and its planets is also provided, as is the relativistic periapse precession of any planet induced by the central star. We illustrate the use of this representation to follow the secular oscillations of the terrestrial planets of the solar system and for Kozai cycles which may take place in exoplanetary systems.
    No preview · Article · Jun 2014 · The Astrophysical Journal
  • Source
    Gwenaël Boué · Daniel Fabrycky
    [Show abstract] [Hide abstract]
    ABSTRACT: The non-resonant secular dynamics of compact planetary systems are modeled by a perturbing function which is usually expanded in eccentricity and absolute inclination with respect to the invariant plane. Here, the expressions are given in a vectorial form which naturally leads to an expansion in eccentricity and mutual inclination. The two approaches are equivalent in most cases, but the vectorial one is specially designed for those where a quasi-coplanar system tilts as a whole by a large amount. Moreover, the vectorial expressions of the Hamiltonian and of the equations of motion are slightly simpler than those given in terms of the usual elliptical elements. We also provide the secular perturbing function in vectorial form expanded in semimajor axis ratio allowing for arbitrary eccentricities and inclinations. The interaction between the equatorial bulge of a central star and its planets is also provided, as is the relativistic periapse precession of any planet induced by the central star. We illustrate the use of this representation for following the secular oscillations of the terrestrial planets of the solar system, and for Kozai cycles as may take place in exoplanetary systems.
    Preview · Article · May 2014
  • Source
    Gwenaël Boué · Daniel Fabrycky
    [Show abstract] [Hide abstract]
    ABSTRACT: The stellar spin orientation relative to the orbital planes of multiplanet systems are becoming accessible to observations. Here, we analyze and classify different types of spin-orbit evolution in compact multiplanet systems perturbed by an inclined outer companion. Our study is based on classical secular theory, using a vectorial approach developed in a separate paper. When planet-planet perturbations are truncated at the second order in eccentricity and mutual inclination, and the planet-companion perturbations are developed at the quadrupole order, the problem becomes integrable. The motion is composed of a uniform precession of the whole system around the total angular momentum, and in the rotating frame, the evolution is periodic. Here, we focus on the relative motion associated to the oscillations of the inclination between the planet system and the outer orbit, and of the obliquities of the star with respect to the two orbital planes. The solution is obtained using a powerful geometric method. With this technique, we identify four different regimes characterized by the nutation amplitude of the stellar spin-axis relative to the orbital plane of the planets. In particular, the obliquity of the star reaches its maximum when the system is in the Cassini regime where planets have more angular momentum than the star, and where the precession rate of the star is similar to that of the planets induced by the companion. In that case, spin-orbit oscillations exceed twice the inclination between the planets and the companion. Even if mutual inclination is only ~ 20 deg, this resonant case can cause the spin-orbit angle to oscillate between perfectly aligned and retrograde values.
    Preview · Article · May 2014
  • Source
    Smadar Naoz · Daniel C. Fabrycky
    [Show abstract] [Hide abstract]
    ABSTRACT: Many close stellar binaries are accompanied by a far-away star. The "eccentric Kozai-Lidov" (EKL) mechanism can cause dramatic inclination and eccentricity fluctuations, resulting in tidal tightening of inner binaries of triple stars. We run a large set of Monte-Carlo simulations including the secular evolution of the orbits, general relativistic precession and tides, and we determine the semimajor axis, eccentricity, inclination and spin-orbit angle distributions of the final configurations. We find that the efficiency of forming tight binaries (<~16 d) when taking the EKL mechanism into account is ~ 21%, and about 4% of all simulated systems ended up in a merger event. These merger events can lead to the formation of blue-stragglers. Furthermore, we find that the spin-orbit angle distribution of the inner binaries carries a signature of the initial setup of the system, thus observations can be used to disentangle close binaries' birth configuration. The resulting inner and outer final orbits' period distributions, and their estimated fraction, suggests secular dynamics may be a significant channel for the formation of close binaries in triples and even blue stragglers.
    Full-text · Article · May 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We establish the three-dimensional architecture of the Kepler-419 (previously KOI-1474) system to be eccentric yet with a low mutual inclination. Kepler-419b is a warm Jupiter at semi-major axis AU with a large eccentricity (e = 0.85) measured via the "photoeccentric effect." It exhibits transit timing variations (TTVs) induced by the non-transiting Kepler-419c, which we uniquely constrain to be a moderately eccentric (e = 0.184 ± 0.002), hierarchically separated (a = 1.68 ± 0.03 AU) giant planet (7.3 ± 0.4 M Jup). We combine 16 quarters of Kepler photometry, radial-velocity (RV) measurements from the HIgh Resolution Echelle Spectrometer on Keck, and improved stellar parameters that we derive from spectroscopy and asteroseismology. From the RVs, we measure the mass of the inner planet to be 2.5 ± 0.3 M Jup and confirm its photometrically measured eccentricity, refining the value to e = 0.83 ± 0.01. The RV acceleration is consistent with the properties of the outer planet derived from TTVs. We find that despite their sizable eccentricities, the planets are coplanar to within degrees, and therefore the inner planet's large eccentricity and close-in orbit are unlikely to be the result of Kozai migration. Moreover, even over many secular cycles, the inner planet's periapse is most likely never small enough for tidal circularization. Finally, we present and measure a transit time and impact parameter from four simultaneous ground-based light curves from 1 m class telescopes, demonstrating the feasibility of ground-based follow-up of Kepler giant planets exhibiting large TTVs.
    Full-text · Article · Apr 2014 · The Astrophysical Journal
  • Source
    Jun Yang · Gwenael Boue · Daniel C. Fabrycky · Dorian S. Abbot
    [Show abstract] [Hide abstract]
    ABSTRACT: Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotation rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.
    Preview · Article · Apr 2014 · The Astrophysical Journal Letters

Publication Stats

6k Citations
1,003.05 Total Impact Points

Institutions

  • 2012-2015
    • University of Chicago
      • Department of Astronomy and Astrophysics
      Chicago, Illinois, United States
  • 2010-2014
    • University of California, Santa Cruz
      • Department of Astronomy and Astrophysics
      Santa Cruz, California, United States
    • University of Texas at Austin
      • Department of Astronomy
      Austin, Texas, United States
  • 2008-2012
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 2005-2007
    • Princeton University
      • Department of Astrophysical Sciences
      Princeton, New Jersey, United States