Are you Colleen Hogan?

Claim your profile

Publications (3)

  • [Show abstract] [Hide abstract] ABSTRACT: Chronic microglial activation has been linked to the progressive degeneration of the nigrostriatal dopaminergic neurons evidenced in Parkinson's disease (PD) pathogenesis. The exact etiology of PD remains poorly understood. Although both oxidative stress and neuroinflammation are identified as co-contributors in PD pathogenesis, signaling mechanisms underlying neurodegenerative processes have yet to be defined. Indeed, we recently identified that protein kinase C delta (PKCδ) activation is critical for induction of dopaminergic neuronal loss in response to neurotoxic stressors. However, it remains to be defined whether PKCδ activation contributes to immune signaling events driving microglial neurotoxicity. In the present study, we systematically investigated whether PKCδ contributes to the heightened microglial activation response following exposure to major proinflammatory stressors, including α-synuclein, tumor necrosis factor α (TNFα), and lipopolysaccharide (LPS). We report that exposure to the aforementioned inflammatory stressors dramatically upregulated PKCδ with a concomitant increase in its kinase activity and nuclear translocation in both BV-2 microglial cells and primary microglia. Importantly, we also observed a marked upregulation of PKCδ in the microglia of the ventral midbrain region of PD patients when compared to age-matched controls, suggesting a role for microglial PKCδ in neurodegenerative processes. Further, shRNA-mediated knockdown and genetic ablation of PKCδ in primary microglia blunted the microglial proinflammatory response elicited by the inflammogens, including ROS generation, nitric oxide production, and proinflammatory cytokine and chemokine release. Importantly, we found that PKCδ activated NFκB, a key mediator of inflammatory signaling events, after challenge with inflammatory stressors, and that transactivation of NFκB led to translocation of the p65 subunit to the nucleus, IκBα degradation and phosphorylation of p65 at Ser536. Furthermore, both genetic ablation and siRNA-mediated knockdown of PKCδ attenuated NFκB activation, suggesting that PKCδ regulates NFκB activation subsequent to microglial exposure to inflammatory stimuli. To further investigate the pivotal role of PKCδ in microglial activation in vivo, we utilized pre-clinical models of PD. We found that PKCδ deficiency attenuated the proinflammatory response in the mouse substantia nigra, reduced locomotor deficits and recovered mice from sickness behavior in an LPS-induced neuroinflammation model of PD. Likewise, we found that PKCδ knockout mice treated with MPTP displayed a dampened microglial inflammatory response. Moreover, PKCδ knockout mice exhibited reduced susceptibility to the neurotoxin-induced dopaminergic neurodegeneration and associated motor impairments. Taken together, our studies propose a pivotal role for PKCδ in PD pathology, whereby sustained PKCδ activation drives sustained microglial inflammatory responses and concomitant dopaminergic neurotoxicity consequently leading to neurobehavioral deficits. We conclude that inhibiting PKCδ activation may represent a novel therapeutic strategy in PD treatment.
    Article · May 2016 · Neurobiology of Disease
  • Article · Dec 2010 · Free Radical Biology and Medicine
  • Richard Gordon · Colleen E Hogan · Matthew L Neal · [...] · Arthi Kanthasamy
    [Show abstract] [Hide abstract] ABSTRACT: Microglial cells play a dynamic role in the brain beyond their established function of immune surveillance. Activated microglia play key roles in neural development, neuroinflammation, neural repair and neurotoxicity. They are particularly important in several neurodegenerative diseases in which sustained microglial activation contributes to the progression of neurodegenerative processes. Consequently, understanding microglial function in CNS health and disease has become an area of active research in recent years. However, a significant obstacle to progress in this field has been the inherent difficulties in obtaining large amounts of primary microglial cells to routinely perform mechanistic studies and characterize signaling pathways regulating the dynamics of microglial activation. Herein, we describe a novel column-free magnetic separation protocol for high-yield isolation of primary microglia from mouse postnatal mixed glial cultures. The procedure is based on optimized culture conditions that enable high microglial cell densities in confluent mixed glial cultures followed by highly efficient recovery of pure microglia by magnetic separation. The novel column-free magnetic separation system utilizes tetrameric antibody complexes (TAC) with dual specificity for CD11b-PE labeled microglia and dextran magnetic nanoparticles. An FcR blocker (anti-CD16/32) is added to enhance the purity of the microglial separation by preventing non-specific labeling of other cell types. This procedure yields on average >3×10⁶ microglial cells per mouse pup, with a remarkable purity of 97% and recovery of around 87% of microglia from the mixed glial population. Importantly, the microglia obtained by this method are fully functional and respond like cells obtained by conventional isolation techniques.
    Article · Nov 2010 · Journal of Neuroscience Methods