Christine Zelenak

Charité Universitätsmedizin Berlin, Berlín, Berlin, Germany

Are you Christine Zelenak?

Claim your profile

Publications (30)93.22 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mitogen- and stress-activated kinase MSK1/2 plays a decisive role in apoptosis. In analogy to apoptosis of nucleated cells, suicidal erythrocyte death called eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine (PS) externalization. Here, we explored whether MSK1/2 participates in the regulation of eryptosis. To this end, erythrocytes were isolated from mice lacking functional MSK1/2 (msk(-/-)) and corresponding wild-type mice (msk(+/+)). Blood count, hematocrit, hemoglobin concentration and mean erythrocyte volume were similar in both msk(-/-) and msk(+/+) mice, but reticulocyte count was significantly increased in msk(-/-) mice. Cell membrane PS exposure was similar in untreated msk(-/-) and msk(+/+) erythrocytes, but was enhanced by pathophysiological cell stressors ex vivo such as hyperosmotic shock or energy depletion to significantly higher levels in msk(-/-) erythrocytes than in msk(+/+) erythrocytes. Cell shrinkage following hyperosmotic shock and energy depletion, as well as hemolysis following decrease of extracellular osmolarity was more pronounced in msk(-/-) erythrocytes. The in vivo clearance of autologously-infused CFSE-labeled erythrocytes from circulating blood was faster in msk(-/-) mice. The spleens from msk(-/-) mice contained a significantly greater number of PS-exposing erythrocytes than spleens from msk(+/+) mice. The present observations point to accelerated eryptosis and subsequent clearance of erythrocytes leading to enhanced erythrocyte turnover in MSK1/2-deficient mice.
    Full-text · Article · Nov 2015 · Scientific Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background/Aims: The cyclin-dependent kinase 4 (CDK4) participates in the regulation of apoptosis of nucleated cells by altering transcriptional regulation of genes governing cell proliferation and cell death. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine (PS) exposure at the cell surface. As mature erythrocytes lack nuclei, acute stimulation of eryptosis cannot result from altered gene expression. Eryptosis is triggered by isotonic cell shrinkage following Cl- removal (replacement with the impermeant organic anion gluconate) or by oxidative stress (exposure to 0.3 mM tertbutyl-hydroperoxide [tBOOH]). The present study explored whether CDK4 is expressed in erythrocytes and whether the CDK4 inhibitors II (NSC625987) and III (ryuvidine) influence eryptosis. Methods: Western blotting was utilized for determination of the presence of CDK4 protein in human erythrocytes, and FACS analysis to determine Fluo3 fluorescence (reflecting cytosolic Ca2+), annexin-V-binding (reflecting PS-exposure) and forward scatter (reflecting cell volume). Results: CDK4 protein was present in human erythrocytes. Cl- removal was followed by decrease of forward scatter and increase of both annexin-V-binding and Fluo3 fluorescence, an effect significantly curtailed by CDK4 inhibitors II and III. Furthermore, CDK4 inhibition blunted enhanced PS-exposure elicited by tBOOH treatment. Conclusions: The present observations disclose the presence of CDK4 protein in human erythrocytes and the suppression of suicidal erythrocyte death by pharmacological inhibition of CDK4.
    No preview · Article · Sep 2015 · Cellular Physiology and Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological evidence suggests that vitamin D deficiency is associated with anemia. The potent metabolite 1,25(OH)2 vitamin D3 [1,25(OH)2D3] activates various signaling cascades regulating a myriad of cellular functions including suicidal cell death or apoptosis. Suicidal death of erythrocytes or eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine (PS) externalization. Stimulation of eryptosis may limit lifespan of circulating erythrocytes and thus cause anemia. In the present study, we explored the effect of a high vitamin D diet (10,000 I.U. vitamin D for 14 days) in mice on eryptosis. Plasma concentrations of erythropoietin were estimated using an immunoassay kit, blood count using an electronic hematology particle counter, relative reticulocyte numbers using Retic-COUNT® reagent, PS exposure at the cell surface from annexin V binding, cell volume from forward scatter, and cytosolic Ca(2+) ([Ca(2+)]i) from Fluo3-fluorescence in FACS analysis. Vitamin D treatment decreased mean corpuscular volume, reticulocyte count, and plasma erythropoietin levels. Vitamin D treatment slightly but significantly decreased forward scatter but did not significantly modify spontaneous PS exposure and [Ca(2+)]i of freshly drawn erythrocytes. Vitamin D treatment augmented the stimulation of PS exposure and cell shrinkage following exposure to hyperosmotic shock (addition of 550 mM sucrose) or energy depletion (glucose removal) without significantly modifying [Ca(2+)]i. The present observations point to a subtle effect of exogenous vitamin D supplementation on erythrocyte survival. © 2015 S. Karger AG, Basel.
    No preview · Article · Jul 2015 · Kidney and Blood Pressure Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background/Aims: Cryptotanshinone, a component of Salvia miltiorrhiza Bunge roots, may trigger suicidal death or apoptosis of tumor cells and has thus been recommended for the prevention and treatment of malignancy. On the other hand, Cryptotanshinone has been shown to counteract apoptosis of neurons and hepatocytes. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and phosphatidylserine translocation to the erythrocyte surface. Eryptosis may be triggered by increase of cytosolic Ca(2+)-activity ([Ca(2+)]i). The present study explored whether Cryptotanshinone stimulates eryptosis. Methods: Forward scatter was taken as measure of cell volume, annexin V binding for identification of phosphatidylserine-exposing erythrocytes and Fluo3-fluorescence for determination of [Ca(2+)]i. Results: A 48 h exposure of human erythrocytes to Cryptotanshinone (10 µM) was followed by significant decrease of forward scatter, significant increase of the percentage annexin-V-binding cells and significant increase of [Ca(2+)]i. The effect of Cryptotanshinone (1 µM) on annexin-V-binding was virtually abrogated by removal of extracellular Ca(2+). Conclusion: Cryptotanshinone is a powerful stimulator of suicidal erythrocyte death or eryptosis, which is effective mainly, if not exclusively, by stimulation of Ca(2+) entry. © 2014 S. Karger AG, Basel.
    Full-text · Article · Jul 2014 · Cellular Physiology and Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Sorafenib (Nexavar(®)), a polytyrosine kinase inhibitor, stimulates apoptosis and is thus widely used for chemotherapy in hepatocellular carcinoma (HCC). Hematological side effects of Nexavar(®) chemotherapy include anemia. Erythrocytes may undergo apoptosis-like suicidal death or eryptosis, which is characterized by cell shrinkage and phosphatidylserine-exposure at the cell surface. Signaling leading to eryptosis include increase in cytosolic Ca(2+)activity ([Ca(2+)](i)), formation of ceramide, ATP-depletion and oxidative stress. The present study explored, whether sorafenib triggers eryptosis in vitro and in vivo. Methods: [Ca(2+)](i )was estimated from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine-exposure from annexin-V-binding, hemolysis from hemoglobin release, ceramide with antibody binding-dependent fluorescence, cytosolic ATP with a luciferin-luciferase-based assay, and oxidative stress from 2',7' dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. Results: A 48 h exposure of erythrocytes to sorafenib (≥0.5 µM) significantly increased Fluo 3 fluorescence, decreased forward scatter, increased annexin-V-binding and triggered slight hemolysis (≥5 µM), but did not significantly modify ceramide abundance and cytosolic ATP. Sorafenib treatment significantly enhanced DCFDA-fluorescence and the reducing agents N-acetyl-L-cysteine and tiron significantly blunted sorafenib-induced phosphatidylserine exposure. Nexavar(®) chemotherapy in HCC patients significantly enhanced the number of phosphatidylserine-exposing erythrocytes. Conclusions: The present observations disclose novel effects of sorafenib, i.e. stimulation of suicidal erythrocyte death or eryptosis, which may contribute to the pathogenesis of anemia in Nexavar(®)-based chemotherapy.
    No preview · Article · Aug 2012 · Cellular Physiology and Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gambogic acid, a xanthone from Garcinia hanburyi, stimulates apoptosis and has thus anticancer potency. Similar to apoptosis of nucleated cells, erythrocytes may undergo apoptosis-like suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine-exposure at the cell surface. Eryptosis could be triggered by increase of cytosolic Ca(2+)-activity ([Ca(2+)](i)), ceramide formation, ATP-depletion and caspase activation. The present study explored, whether gambogic acid triggers eryptosis of human erythrocytes. [Ca(2+)](i )was estimated utilizing Fluo-3 fluorescence, cell volume from forward scatter, phosphatidylserine-exposure from annexin-V-binding, hemolysis from hemoglobin release, ceramide abundance utilizing antibodies, and cytosolic ATP with luciferin- luciferase. A 48 h exposure to gambogic acid (500 nM) significantly increased [Ca(2+)](i), stimulated ceramide formation, decreased forward scatter and increased annexin-V-binding. Gambogic acid exposure was followed by a slight but significant increase of hemolysis. Gambogic acid did not significantly modify cytosolic ATP-concentration. Removal of extracellular Ca(2+) slightly, but significantly blunted the effect of gambogic acid (500 nM) on annexin-V-binding. The present observations disclose a novel effect of gambogic acid, i.e. stimulation of suicidal death of human erythrocytes or eryptosis, paralleled by Ca(2+)-entry, ceramide formation, cell shrinkage and phosphatidylserine-exposure.
    No preview · Article · Jul 2012 · Cellular Physiology and Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pharmacological modification of protein kinase CK1 (casein kinase 1) has previously been shown to influence suicidal erythrocyte death or eryptosis, which is triggered by activation of Cl(-)-sensitive Ca(2+)-permeable cation channels. Ca(2+) entering through those channels stimulates cell membrane scrambling and opens Ca(2+)-activated K(+)-channels resulting in KCl exit and thus cell shrinkage. The specific CK1-inhibitor D4476 (1 µM) blunted, whereas the specific CK1 αactivator pyrvinium pamoate (10 µM) enhanced cell membrane scrambling. The substances were at least partially effective through modification of cytosolic Ca(2+)-activity. The present study explored, whether pyrvinium pamoate indeed influences Cl(-)-sensitive cation-channels in erythrocytes. As a result, removal of Cl(-)increased Fluo3-fluorescence (reflecting cytosolic Ca(2+)-activity), triggered cell membrane scrambling (apparent from annexin-V-binding), and decreased forward scatter (pointing to cell shrinkage). Pyrvinium pamoate significantly augmented the effect of Cl(-)-removal on Fluo3 fluorescence and annexin-V-binding, but blunted the effect on forward scatter. According to whole cell patch clamp recording, Cl(-)removal activated a cation current, which was significantly enhanced by pyrvinium pamoate. Pyrvinium pamoate inhibited Ca(2+)-activated K(+)-channels. Ca(2+)-ionophore ionomycin (1 µM) decreased forward scatter, an effect significantly blunted by pyrvinium pamoate. In conclusion, pyrvinium pamoate activates Cl(-)-sensitive Ca(2+)-permeable cation channels with subsequent Ca(2+)-entry and inhibits Ca(2+)-activated K(+)-channels thus blunting the stimulating effect of Ca(2+) on those channels, K(+)-exit and thus cell shrinkage.
    No preview · Article · Jul 2012 · Cellular Physiology and Biochemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carbon monoxide (CO) intoxication severely interferes with the oxygen-transporting function of haemoglobin. Beyond that, CO participates in the regulation of apoptosis. CO could be generated from CO-releasing molecules (CORM), such as the tricarbonyl-dichlororuthenium (II) dimer (CORM-2), which is presently considered for the treatment of vascular dysfunction, inflammation, tissue ischaemia and organ rejection. CORM-2 is at least partially effective by modifying gene expression and mitochondrial potential. Erythrocytes lack nuclei and mitochondria but may undergo suicidal cell death or eryptosis, characterized by cell shrinkage and phospholipid scrambling of the cell membrane. Eryptosis is triggered by the increase in cytosolic Ca(2+) activity ([ Ca(2+) ](i) ). The present study explored whether CORM-2 influences eryptosis. To this end, [ Ca(2+) ](i) was estimated from Fluo-3-fluorescence, cell volume from forward scatter, phospholipid scrambling from annexin-V-binding and haemolysis from haemoglobin release. CO-binding haemoglobin (COHb) was estimated utilizing a blood gas analyser. As a result, exposure of erythrocytes for 24 hr to CORM-2 (≥5 μM) significantly increased COHb, [ Ca(2+) ](i) , forward scatter, annexin-V-binding and haemolysis. Annexin-V-binding was significantly blunted by 100% oxygen and was virtually abolished in the nominal absence of Ca(2+) . In conclusion, CORM-2 stimulates cell membrane scrambling of erythrocytes, an effect largely due to Ca(2+) entry and partially reversed by O(2) .
    Full-text · Article · Jun 2012 · Basic & Clinical Pharmacology & Toxicology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tanshinone IIA, an antimicrobial, antioxidant, antianaphylactic, antifibrotic, vasodilating, antiatherosclerotic, organo-protective and antineoplastic component from the rhizome of Salvia miltiorrhiza, is known to trigger apoptosis of tumor cells. Tanshinone IIA is effective in part through mitochondrial depolarization and altered gene expression. Erythrocytes lack mitochondria and nuclei but may undergo eryptosis, an apoptosis-like suicidal cell death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Eryptosis is triggered by increase of cytosolic Ca(2+) activity, ATP depletion and ceramide formation. The present study explored, whether tanshinone IIA elicits eryptosis. Cytosolic Ca(2+)-concentration was determined from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine exposure from binding of fluorescent annexin V, hemolysis from hemoglobin concentration in the supernatant, ATP concentration utilizing luciferin-luciferase and ceramide formation utilizing fluorescent anticeramide antibodies. Clearance of circulating erythrocytes was estimated by CFSE-labeling. A 48 h exposure to tanshinone IIA (≥10 µM) significantly increased cytosolic Ca(2+)-concentration, decreased ATP concentration (25 µM), increased lactate concentration (25 µM), increased ceramide formation (25 µM), decreased forward scatter, increased annexin-V-binding and increased (albeit to a much smaller extent) hemolysis. The effect of 25 µM tanshinone IIA on annexin-V binding was partially reversed in the nominal absence of Ca(2+). Labelled tanshinone IIA-treated erythrocytes were more rapidly cleared from the circulating blood in comparison to untreated erythrocytes. The present observations reveal a completely novel effect of tanshinone IIA, i.e. triggering of Ca(2+) entry, ATP depletion and ceramide formation in erythrocytes, events eventually leading to eryptosis with cell shrinkage and cell membrane scrambling.
    Full-text · Article · Jun 2012 · Cellular Physiology and Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The oxidative stress-responsive kinase 1 (OSR1) is activated by WNK (with no K kinases) and in turn stimulates the thiazide-sensitive Na-Cl cotransporter (NCC) and the furosemide-sensitive Na-K-2Cl cotransporter (NKCC), thus contributing to transport and cell volume regulation. Little is known about extrarenal functions of OSR1. The present study analyzed the impact of decreased OSR1 activity on the function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. DCs were cultured from bone marrow of heterozygous WNK-resistant OSR1 knockin mice (osr(KI)) and wild-type mice (osr(WT)). Cell volume was estimated from forward scatter in FACS analysis, ROS production from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, cytosolic pH (pH(i)) from 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein fluorescence, and Na(+)/H(+) exchanger activity from Na(+)-dependent realkalinization following ammonium pulse and migration utilizing transwell chambers. DCs expressed WNK1, WNK3, NCC, NKCC1, and OSR1. Phosphorylated NKCC1 was reduced in osr(KI) DCs. Cell volume and pH(i) were similar in osr(KI) and osr(WT) DCs, but Na(+)/H(+) exchanger activity and ROS production were higher in osr(KI) than in osr(WT) DCs. Before LPS treatment, migration was similar in osr(KI) and osr(WT) DCs. LPS (1 μg/ml), however, increased migration of osr(WT) DCs but not of osr(KI) DCs. Na(+)/H(+) exchanger 1 inhibitor cariporide (10 μM) decreased cell volume, intracellular reactive oxygen species (ROS) formation, Na(+)/H(+) exchanger activity, and pH(i) to a greater extent in osr(KI) than in osr(WT) DCs. LPS increased cell volume, Na(+)/H(+) exchanger activity, and ROS formation in osr(WT) DCs but not in osr(KI) DCs and blunted the difference between osr(KI) and osr(WT) DCs. Na(+)/H(+) exchanger activity in osr(WT) DCs was increased by the NKCC1 inhibitor furosemide (100 nM) to values similar to those in osr(KI) DCs. Oxidative stress (10 μM tert-butyl-hydroperoxide) increased Na(+)/H(+) exchanger activity in osr(WT) DCs but not in osr(KI) DCs and reversed the difference between genotypes. Cariporide virtually abrogated Na(+)/H(+) exchanger activity in both genotypes and blunted LPS-induced cell swelling and ROS formation in osr(WT) mice. In conclusion, partial OSR1 deficiency influences Na(+)/H(+) exchanger activity, ROS formation, and migration of dendritic cells.
    No preview · Article · May 2012 · AJP Cell Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapamycin, a widely used immunosuppressive drug, has been shown to interfere with the function of dendritic cells (DCs), antigen-presenting cells contributing to the initiation of primary immune responses and the establishment of immunological memory. DC function is governed by the Na(+)/H(+) exchanger (NHE), which is activated by bacterial lipopolysaccharides (LPS) and is required for LPS-induced cell swelling, reactive oxygen species (ROS) production and TNF-α release. The present study explored, whether rapamycin influences NHE activity and/or ROS formation in DCs. Mouse DCs were treated with LPS in the absence and presence of rapamycin (100 nM). ROS production was determined from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, cytosolic pH (pH(i)) from 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence, NHE activity from the Na(+)-dependent realkalinization following an ammonium pulse, cell volume from forward scatter in FACS analysis, and TNF-α production utilizing ELISA. In the absence of LPS, rapamycin did not significantly modify cytosolic pH, NHE activity or cell volume but significantly decreased ROS formation. LPS stimulated NHE activity, enhanced forward scatter, increased ROS formation, and triggered TNF-α release, effects all blunted in the presence of rapamycin. NADPH oxidase inhibitor Vas-2870 (10 μM) mimicked the effect of rapamycin on LPS induced stimulation of NHE activity and TNF-α release. The effect of rapamycin on TNF-α release was also mimicked by the antioxidant ROS scavenger Tempol (30 μM) and partially reversed by additional application of tert-butylhydroperoxide (10 μM). In conclusion, in DCs rapamycin disrupts LPS induced ROS formation with subsequent inhibition of NHE activity, cell swelling and TNF-α release.
    Full-text · Article · Apr 2012 · Cellular Physiology and Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The anti-inflammatory Nigella sativa component thymoquinone compromises the function of dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. DC function is regulated by the Na(+)/H(+) exchanger (NHE), which is stimulated by lipopolysaccharides (LPS) and required for LPS-induced cell swelling, reactive oxygen species (ROS) production, TNF-α release and migration. Here we explored, whether thymoquinone influences NHE activity in DCs. To this end, bone marrow derived mouse DCs were treated with LPS in the absence and presence of thymoquinone (10 μM). Cytosolic pH (pH(i)) was determined from 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence, NHE activity from the Na(+)-dependent realkalinization following an ammonium pulse, cell volume from forward scatter in FACS analysis, ROS production from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, TNF-α production utilizing ELISA and DC migration with transwell migration assays. As a result, exposure of DCs to LPS (1 μg/ml) led within 4 hours to transient increase of NHE activity. Thymoquinone did not significantly modify cytosolic pH or cellular NHE activity in the absence of LPS, but abrogated the effect of LPS on NHE activity. Accordingly, in the presence of thymoquinone LPS-treatment resulted in cytosolic acidification. LPS further increased forward scatter and ROS formation, effects similarly abrogated by thymoquinone. Again, in the absence of LPS, thymoquinone did not significantly modify ROS formation and cell volume. LPS further triggered TNF-α release and migration, effects again blunted in the presence of thymoquinone. NHE1 inhibitor cariporide (10 μM) blunted LPS induced TNF-α release and migration. The effects of thymoquinone on NHE activity and migration were reversed upon treatment of the cells with t-butyl hydroperoxide (TBOOH, 5 μM). In conclusion, thymoquinone blunts LPS induced NHE activity, cell swelling, oxidative burst, cytokine release and migration of bone marrow derived murine dendritic cells. NHE inhibition may thus contribute to the antiinflammatory action of thymoquinone.
    No preview · Article · Mar 2012 · Cellular Physiology and Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase CK1 (casein kinase 1) isoforms are involved in the regulation of various physiological functions including apoptosis. The specific CK1 inhibitor D4476 may either inhibit or foster apoptosis. Similar to apoptosis of nucleated cells, eryptosis, the suicidal death of erythrocytes, is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+) activity following energy depletion (removal of glucose) or oxidative stress (exposure to the oxidant tert-butyl hydroperoxide [TBOOH]). Western blotting was utilized to verify that erythrocytes express the protein kinase CK1α, and FACS analysis to determine whether the CK1 inhibitor D4476 and CK1α activator pyrvinium pamoate modify forward scatter (reflecting cell volume), annexin V binding (reflecting phosphatidylserine exposure), and Fluo3 fluorescence (reflecting cytosolic Ca(2+) activity). As a result, both, human and murine erythrocytes express CK1 isoform α. Glucose depletion (48 hours) and exposure to 0.3 mM TBOOH (30 minutes) both decreased forward scatter, increased annexin V binding and increased Fluo3 fluorescence. CK1 inhibitor D4476 (10 μM) significantly blunted the decrease in forward scatter, the increase in annexin V binding and the increase in Fluo 3 fluorescence. (R)-DRF053, another CK1 inhibitor, similarly blunted the increase in annexin V binding upon glucose depletion. The CK1α specific activator pyrvinium pamoate (10 μM) significantly enhanced the increase in annexin V binding and Fluo3 fluorescence upon glucose depletion and TBOOH exposure. In the presence of glucose, pyrvinium pamoate slightly but significantly increased Fluo3 fluorescence. In conclusion, CK1 isoform α participates in the regulation of erythrocyte programmed cell death by modulating cytosolic Ca(2+) activity.
    No preview · Article · Mar 2012 · Cellular Physiology and Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: p38 protein kinase is activated by hyperosmotic shock, participates in the regulation of cell volume sensitive transport and metabolism and is involved in the regulation of various physiological functions including cell proliferation and apoptosis. Similar to apoptosis of nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include hyperosmotic shock, which increases cytosolic Ca(2+) activity and ceramide formation. The present study explored whether p38 kinase is expressed in human erythrocytes, is activated by hyperosmotic shock and participates in the regulation of eryptosis. Western blotting was utilized to determine phosphorylation of p38 kinase, forward scatter to estimate cell volume, annexin V binding to depict phosphatidylserine exposure and Fluo3 fluorescence to estimate cytosolic Ca(2+) activity. As a result, erythrocytes express p38 kinase, which is phosphorylated upon osmotic shock (+550 mM sucrose). Osmotic shock decreased forward scatter, increased annexin V binding and increased Fluo3 fluorescence, all effects significantly blunted by the p38 kinase inhibitors SB203580 (2 μM) and p38 Inh III (1 μM). In conclusion, p38 kinase is expressed in erythrocytes and participates in the machinery triggering eryptosis following hyperosmotic shock.
    No preview · Article · Dec 2011 · Cellular Physiology and Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dicoumarol, a widely used anticoagulant, may cause anemia, which may result from enhanced erythrocyte loss due to bleeding or due to accelerated erythrocyte death. Erythrocytes may undergo suicidal death or eryptosis, characterized by cell shrinkage and phospholipid scrambling of the cell membrane. Eryptosis may be triggered by increase of cytosolic Ca(2+)-activity ([Ca(2+)](i)). The present study explored, whether dicoumarol induces eryptosis. [Ca(2+)](i) was estimated from Fluo3-fluorescence, cation channel activity utilizing whole cell patch clamp, cell volume from forward scatter, phospholipid scrambling from annexin-V-binding, and hemolysis from haemoglobin release. Exposure of erythrocytes for 48 hours to dicoumarol (=10 μM) significantly increased [Ca(2+)](i), enhanced cation channel activity, decreased forward scatter, triggered annexin-V-binding and elicited hemolysis. Following exposure to 30 μM dicoumarol, annexin-V-binding affected approximately 15%, and hemolysis 2% of treated erythrocytes. The stimulation of annexin-V-binding by dicoumarol was abrogated in the nominal absence of Ca(2+). In conclusion, dicoumarol stimulates suicidal death of erythrocytes by stimulating Ca(2+) entry and subsequent triggering of Ca(2+) dependent cell membrane scrambling.
    No preview · Article · Dec 2011 · Cellular Physiology and Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hexavalent (VI) chromium is a global contaminant with cytotoxic activity. Chromium (VI) induces oxidative stress, inflammation, cell proliferation, malignant transformation and may trigger carcinogenesis and at the same time apoptosis. The toxic effects of chromium (VI) at least partially result from mitochondrial injury and DNA damage. Erythrocytes lack mitochondria and nuclei but may experience an apoptosis-like suicidal cell death, i.e. eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Eryptosis may result from increase of cytosolic Ca(2+) activity, ATP depletion and/or ceramide formation. The present study explored, whether chromium (VI) triggers eryptosis. Fluo-3-fluorescence was employed to determine cytosolic Ca(2+)-concentration, forward scatter to estimate cell volume, binding of fluorescent annexin V to detect phosphatidylserine exposure, hemoglobin concentration in the supernatant to quantify hemolysis, luciferin-luciferase to determine cytosolic ATP concentration and fluorescent anti-ceramide antibodies to uncover ceramide formation. A 48 h exposure to chromium (VI) (≥10 μM) significantly increased cytosolic Ca(2+)-concentration, decreased ATP concentration (20 μM), decreased forward scatter, increased annexin V-binding and increased (albeit to a much smaller extent) hemolysis. Chromium (VI) did not significantly modify ceramide formation. The effect of 20 μM chromium (VI) on annexin V binding was partially reversed in the nominal absence of Ca(2+). The present observations disclose a novel effect of chromium (VI), i.e. Ca(2+) entry and cytosolic ATP depletion in erythrocytes, effects resulting in eryptosis with cell shrinkage and cell membrane scrambling.
    No preview · Article · Nov 2011 · Biology of Metals
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ursolic acid (1), a triterpenoid with pleotropic effects including inhibition of tumor growth, is well known to trigger apoptosis of nucleated cells. The effect is at least partially due to altered gene expression and mitochondrial dysfunction. Erythrocytes lack nuclei and mitochondria but, similar to nucleated cells, may undergo suicidal cell death or eryptosis, which is characterized by cell shrinkage and phospholipid scrambling of the cell membrane. Triggers of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), ceramide formation and/or ATP depletion. The present study has investigated whether or not 1 induces eryptosis. [Ca2+]i was estimated from Fluo-3 fluorescence, cell volume from forward scatter, phospholipid scrambling from annexin V binding, hemolysis from hemoglobin release, and cytosolic ATP concentration ([ATP]i) utilizing a luciferase assay and ceramide-utilizing fluorescent antibodies in FACS analysis. As a result, exposure of erythrocytes for 48 h to 1 (≥5 μM) did not significantly modify [ATP]i, but significantly increased [Ca2+]i, stimulated ceramide formation, decreased forward scatter, triggered annexin V binding, and elicited hemolysis. At 5 μM, 1 stimulated phospholipid scrambling in 10% and hemolysis in 2% of treated erythrocytes. Annexin V binding was blunted in the nominal absence of Ca2+. In conclusion, the food component ursolic acid stimulates suicidal death of erythrocytes, i.e., cells devoid of nuclei and mitochondria.
    No preview · Article · Sep 2011 · Journal of Natural Products
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enniatin A, a peptide antibiotic and common food contaminant, triggers mitochondrial dysfunction and apoptosis. Even though lacking mitochondria, erythrocytes may similarly undergo suicidal cell death or eryptosis. Eryptosis is characterized by cell shrinkage and cell membrane phospholipid scrambling. Triggers of phospholipid scrambling include energy depletion and increase in cytosolic Ca(2+) activity ([Ca(2+) ](i) ). The present study explored whether enniatin A triggers phospholipid scrambling. Phospholipid scrambling was estimated from annexin-V-binding, cell volume from forward scatter (FSC), [Ca(2+) ](i) from Fluo3-fluorescence, cytosolic ATP-concentration ([ATP](i) ) using a luciferase assay and hemolysis from hemoglobin release. Exposure of erythrocytes for 48 h to enniatin A (≥ 2.5 μM) significantly increased [Ca(2+) ](i) , decreased [ATP](i) , decreased FSC, triggered annexin-V-binding and elicited hemolysis. Annexin-V-binding affected 25%, and hemolysis 2% of treated erythrocytes. Decreased [ATP](i) by glucose depletion for 48 h was similarly followed by increased [Ca(2+) ](i) , decreased FSC and annexin-V-binding. Enniatin A augmented the effect on [Ca(2+) ](i) and annexin-V-binding, but not on FSC. Annexin-V-binding was blunted by Ca(2+) removal, by the cation channel inhibitor amiloride (1 mM), by the protein kinase C inhibitor staurosporine (500 nM) but not by the pancaspase inhibitor zVAD (10 μM). The food contaminant enniatin A triggers ATP depletion and increases cytosolic Ca(2+) activity, effects resulting in suicidal erythrocyte death.
    No preview · Article · Sep 2011 · Molecular Nutrition & Food Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Benzethonium, an antimicrobial surfactant widely used as preservative of pharmaceuticals, topical wound care product and oral disinfectant, triggers apoptosis of several cell types. The apoptosis is preceded and possibly triggered by mitochondrial depolarization. Even though lacking mitochondria, erythrocytes may similarly undergo suicidal cell death or eryptosis. Hallmarks of eryptosis include cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Eryptosis may be triggered by energy depletion, which leads to increase of cytosolic Ca(2+)-activity with subsequent Ca(2+)-sensitive cell shrinkage and cell membrane scrambling. Ca(2+)-sensitivity is enhanced by ceramide. The present study explored the effect of benzethonium on eryptosis. Cell membrane scrambling was estimated from binding of fluorescent annexin V to phosphatidylserine, cell volume from forward scatter in FACS analysis, cytosolic Ca(2+)-concentration from Fluo3-fluorescence, hemolysis from hemoglobin release, lactate formation by colorimetry and ceramide utilizing fluorescent antibodies. A 48 hours exposure to benzethonium (=5μM) significantly increased cytosolic Ca(2+)-concentration, decreased forward scatter and triggered annexin V-binding affecting some 30% of the erythrocytes at 5 μM benzethonium. Only 5% of treated erythrocytes were hemolytic. The effects of benzethonium on annexin V binding were blunted in the nominal absence of Ca(2+) and in the presence of amiloride (1 mM) but not in the presence of the pancaspase inhibitor zVAD (10 μM). Benzethonium further significantly enhanced the effect of glucose depletion on cytosolic Ca(2+)-concentration and annexin V-binding, but significantly blunted the effect of glucose depletion on forward scatter. Benzethonium (5 μM) significantly enhanced lactic acid formation but not ceramide abundance. The present observations disclose a novel effect of benzethonium, i.e. triggering of suicidal death of erythrocytes.
    No preview · Article · Aug 2011 · Cellular Physiology and Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sphingosine kinase 1 phosphorylates sphingosine, which is converted to ceramide by ceramide synthetase. Ceramide triggers eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phosphatidylserine (PS) exposure at the erythrocyte surface. Erythrocytes lack sphingosine phosphate-degrading enzymes and thus store large quantities of sphingosine phosphate. The present study explored the influence of sphingosine and sphingosine phosphate on eryptosis. [Ca(2+)](i), was estimated from Fluo3 fluorescence, cell volume from forward scatter and PS exposure from annexin V-binding in FACS analysis. Sphingosine (0.1 - 10 μM) but not sphingosine-1- phosphate (0.1 - 10 μM) increased [Ca(2+)](i), decreased cell volume and increased PS-exposure. The observations disclose sphingosine, but not sphingosine-1-phosphate, as a strong inducer of eryptosis.
    No preview · Article · Aug 2011 · Cellular Physiology and Biochemistry