Clarice Kras Borges da Silveira

Universidade Federal de Ciências da Saúde de Porto Alegre, Pôrto de São Francisco dos Casaes, Rio Grande do Sul, Brazil

Are you Clarice Kras Borges da Silveira?

Claim your profile

Publications (4)14.34 Total impact

  • Source
    Fernando Benetti · Clarice Kras Borges da Silveira · Jessica Rosa · Ivan Izquierdo
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent findings suggest a role of brain histamine in the regulation of memory consolidation, particularly in one-trial inhibitory avoidance (IA) learning and that disruption in the mother infant relationship i.e. maternal deprivation induces cognitive deficits. We investigate whether histamine itself, and histaminergic compounds given into the basolateral amygdala (BLA) immediately post-training can affect retention (24h after training) of one-trial (IA) in rats submitted to early postnatal maternal deprivation. In all cases, deprived (Dep) animals had lower retention scores than non-deprived controls (N-dep). Histamine induced memory enhancement on its own in N-dep animals and was able to overcome the deleterious effect of Dep. The effects by SKF-91488 is similar to histamine. The H3 agonist, imetit mimetized the enhancing effects of histamine; neither agonist H1 pyridylethylamine nor the H2 dimaprit had any effect. Ranitidine and thioperamide (50nmol) co-infused with histamine (10nmol) fully blocked the restorative effect of histamine on retention in Dep animals. Thioperamide, in addition, blocked the enhancing effect of histamine on memory of the N-dep animals as well. None of the drugs used given into BLA had any effect on open-field or elevated plus-maze behavior in N-dep or Dep rats. Our results are limited to experimental design in rats. Extrapolation i.e. in humans requires further experimentations. The present results suggest that the memory deficit induced by early postnatal maternal deprivation in rats may at least in part be due to an impairment of histamine H3 receptor-mediated mediated mechanisms in the BLA.
    Full-text · Article · Sep 2014 · Behavioural Brain Research
  • Source
    Clarice Krás Borges da Silveira · Cristiane R G Furini · Fernando Benetti · Siomara da Cruz Monteiro · Ivan Izquierdo
    [Show abstract] [Hide abstract]
    ABSTRACT: Findings have shown that histamine receptors in the hippocampus modulate the acquisition and extinction of fear motivated learning. In order to determine the role of hippocampal histaminergic receptors on recognition memory, adult male Wistar rats with indwelling infusion cannulae stereotaxically placed in the CA1 region of dorsal hippocampus were trained in an object recognition learning task involving exposure to two different stimulus objects in an enclosed environment. In the test session, one of the objects presented during training was replaced by a novel one. Recognition memory retention was assessed 24 h after training by comparing the time spent in exploration (sniffing, touching) of the known object with that of the novel one. When infused in the CA1 region immediately, 30, 120 or 360 min posttraining, the H1-receptor antagonist, pyrilamine, the H2-receptor antagonist, ranitidine, and the H3-receptor agonist, imetit, blocked long-term memory retention in a time dependent manner (30 to 120 min) without affecting general exploratory behavior, anxiety state or hippocampal function. Our data indicate that histaminergic system impairs consolidation of object recognition memory through H1, H2 and H3 receptors.
    Full-text · Article · Apr 2013 · Neurobiology of Learning and Memory
  • Fernando Benetti · Clarice Kras Borges da Silveira · Weber Cláudio da Silva · Martín Cammarota · Iván Izquierdo
    [Show abstract] [Hide abstract]
    ABSTRACT: Early partial maternal deprivation causes long-lasting neurochemical, behavioral and brain structural effects. In rats, it causes a deficit in memory consolidation visible in adult life. Some of these deficits can be reversed by donepezil and galantamine, which suggests that they may result from an impairment of brain cholinergic transmission. One such deficit, representative of all others, is an impairment of memory consolidation, clearly observable in a one-trial inhibitory avoidance task. Recent data suggest a role of brain histaminergic systems in the regulation of behavior, particularly inhibitory avoidance learning. Here we investigate whether histamine itself, its analog SKF-91844, or various receptor-selective histamine agonists and antagonists given into the CA1 region of the hippocampus immediately post-training can affect retention of one-trial inhibitory avoidance in rats submitted to early postnatal maternal deprivation. We found that histamine, SKF-91844 and the H2 receptor agonist, dimaprit enhance consolidation on their own and reverse the consolidation deficit induced by maternal deprivation. The enhancing effect of histamine was blocked by the H2 receptor antagonist, ranitidine, but not by the H1 receptor antagonist pyrilamine or by the H3 antagonist thioperamide given into CA1 at doses known to have other behavioral actions, without altering locomotor and exploratory activity or the anxiety state of the animals. The present results suggest that the memory deficit induced by early postnatal maternal deprivation in rats may in part be due to an impairment of histamine mediated mechanisms in the CA1 region of the rat hippocampus.
    No preview · Article · Jan 2012 · Neurobiology of Learning and Memory
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-reinforced retrieval induces memory extinction, a phenomenon characterized by a decrease in the intensity of the learned response. This attribute has been used to develop extinction-based therapies to treat anxiety and post-traumatic stress disorders. Histamine modulates memory and anxiety but its role on fear extinction has not yet been evaluated. Therefore, using male Wistar rats, we determined the effect of the intra-hippocampal administration of different histaminergic agents on the extinction of step-down inhibitory avoidance (IA), a form of aversive learning. We found that intra-CA1 infusion of histamine immediately after non-reinforced retrieval facilitated consolidation of IA extinction in a dose-dependent manner. This facilitation was mimicked by the histamine N-methyltransferase inhibitor SKF91488 and the H2 receptor agonist dimaprit, reversed by the H2 receptor antagonist ranitidine, and unaffected by the H1 antagonist pyrilamine, the H3 antagonist thioperamide and the antagonist at the NMDA receptor (NMDAR) polyamine-binding site ifenprodil. Neither the H1 agonist 2-2-pyridylethylamine nor the NMDAR polyamine-binding site agonist spermidine affected the consolidation of extinction while the H3 receptor agonist imetit hampered it. Extinction induced the phosphorylation of ERK1 in dorsal CA1 while intra-CA1 infusion of the MEK inhibitor U0126 blocked extinction of the avoidance response. The extinction-induced phosphorylation of ERK1 was enhanced by histamine and dimaprit and blocked by ranitidine administered to dorsal CA1 after non-reinforced retrieval. Taken together, our data indicate that the hippocampal histaminergic system modulates the consolidation of fear extinction through a mechanism involving the H2-dependent activation of ERK signalling.
    No preview · Article · Oct 2011 · The International Journal of Neuropsychopharmacology