Carly J. Stevens

Lancaster University, Lancaster, England, United Kingdom

Are you Carly J. Stevens?

Claim your profile

Publications (95)492.05 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Summary 1.Biologically reactive nitrogen (Nr) enrichment threatens biodiversity in diverse ecosystems. Previous controlled N addition experiments may overestimate the effects of atmospheric Nr deposition on the rate of species loss, as it has been found that low frequency Nr additions, as used in traditional studies, lead to more rapid biodiversity loss. It remains unclear, however, whether the colonization of new species (gain) or extinction of old species (loss) is the cause of this difference. 2.By independently manipulating the frequency (twice vs. monthly additions yr–1) and the rate (from 0 to 50 g N m–2 yr–1) of NH4NO3 inputs for six years in a temperate grassland of northern China, we aimed to examine the contribution of gain and loss of species to the reduction in species richness under different regimes of Nr inputs. 3.Results showed that the gain of new species was higher at a high frequency of N addition than that at a low addition frequency, whilst loss of existing species was similar between the two frequencies of N addition. The number of new species gained decreased and old species lost increased with the increasing rate of Nr addition at both annual and five-year intervals. Cumulative gain of new species was negatively correlated with soil acidification, ammonium concentration and community biomass accumulation, whereas cumulative loss of old species was positively correlated with these variables. 4.Our results revealed lower new species colonization results in lower species richness at low frequency of Nr addition. Findings from this study highlight the important role of N addition frequency in regulating the effects of Nr addition on community dynamics. To assess the effects of atmospheric Nr deposition on ecosystem structure and functioning, it is necessary to assess not only the dose but also the frequency of N addition.
    Full-text · Article · Oct 2015 · Functional Ecology
  • Carly J Stevens · Richard J Payne · Adam Kimberley · Simon M Smart
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrogen deposition is known to have major impacts on contemporary ecosystems but few studies have addressed how these impacts will develop over coming decades. We consider likely changes to British semi-natural vegetation up to the year 2030 both qualitatively, based on knowledge of species responses from experimental and gradient studies, and quantitatively, based on modelling of species relationships in national monitoring data. We used historical N deposition trends and national predictions of changing deposition to calculate cumulative deposition from 1900 to 2030. Data from the Countryside Survey (1978, 1990 and 1998) was used to parameterise models relating cumulative N deposition to Ellenberg N which were then applied to expected future deposition trends. Changes to habitat suitability for key species of grassland, heathland and bog, and broadleaved woodland to 2030 were predicted using the MultiMOVE model. In UK woodlands by 2030 there is likely to be reduced occurrence of lichens, increased grass cover and a shift towards more nitrophilic vascular plant species. In grasslands we expect changing species composition with reduced occurrence of terricolous lichens and, at least in acid grasslands, reduced species richness. In heaths and bogs we project overall reductions in species richness with decreased occurrence of terricolous lichens and some bryophytes, reduced cover of dwarf shrubs and small increases in grasses. Our study clearly suggests that changes in vegetation due to nitrogen deposition are likely to continue through coming decades.
    No preview · Article · Oct 2015 · Environmental Pollution
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Questions: How has vegetation species diversity and species composition changed between 1965 and 2012/13 in acidic and calcareous grasslands? What has driven this change in vegetation? Location: A 2400-km2 area around Sheffield, northern England. Methods: In 1965 a survey was conducted to describe grassland vegetation of the Sheffield region. We repeated this survey in 2012/13, revisiting acidic and calcareous grassland sites (455 quadrats). Climate, N and sulphur deposition, cattle and sheep stocking rates, soil pH, altitude, aspect and slope were considered to be potential drivers of variation in vegetation. We analysed temporal changes in vegetation and examined relationships with spatial and temporal variation in driver variables. Results: Both acidic and calcareous grasslands showed clear changes in species composition between the two time periods. In acidic grasslands there was no significant change in richness but there were declines in diversity. There were significant increases in Ellenberg N. Nitrogen deposition and grazing were identified as potential drivers of spatial and temporal patterns but it was not possible to discriminate the respective impacts of potential drivers. In calcareous grasslands there were declines in species richness, diversity and appropriate diversity indices. Climate and soil pH were identified as potential drivers of spatial and temporal patterns. Conclusions: Despite only small site losses compared to other surveys in the UK, especially within the national park, both calcareous and acidic grasslands showed very clear changes in species composition. In acidic grasslands, high abundance of Pteridium aquilinum was a particular problem and had increased considerably between the two survey periods. Atmospheric N deposition and grazing were identified as drivers of species diversity. A number of calcareous grasslands showed signs of reduced management intensity leading to scrub invasion.
    Full-text · Article · Oct 2015 · Applied Vegetation Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide.
    Full-text · Article · Aug 2015 · Proceedings of the National Academy of Sciences
  • Greg Wood · Duncan Whyatt · Carly Stevens

    No preview · Article · Aug 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exotic species dominate many communities; however the functional significance of species’ biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands.
    Full-text · Article · Jul 2015 · Nature Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Terrestrial ecosystem productivity is widely accepted to be nutrient limited(1). Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP) 2,3, the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized(4-8). However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+mu), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+mu co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment.
    Full-text · Article · Jul 2015 · Nature Plants
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Humans dominate many important Earth system processes including the nitrogen (N) cycle. Atmospheric N deposition affects fundamental processes such as carbon cycling, climate regulation, and biodiversity, and could result in changes to fundamental Earth system processes such as primary production. Both modelling and experimentation have suggested a role for anthropogenically altered N deposition in increasing productivity, nevertheless, current understanding of the relative strength of N deposition with respect to other controls on production such as edaphic conditions and climate is limited. Here we use an international multiscale data set to show that atmospheric N deposition is positively correlated to aboveground net primary production (ANPP) observed at the 1-m2 level across a wide range of herbaceous ecosystems. N deposition was a better predictor than climatic drivers and local soil conditions, explaining 16% of observed variation in ANPP globally with an increase of 1 kg N·ha−1·yr−1 increasing ANP...
    Full-text · Article · Jun 2015 · Ecology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tracing organic matter (OM) in soil is challenging, because runoff and leaching processes are interrelated and have multiple sources. Therefore, multiple tracers with low background concentrations such as rare earth element oxides (REOs) are necessary to delineate the origin of sources of the organic materials in groundwater, rivers or in catchments. The main objective of this study was to examine the potential use of REOs as a tracer in various forms of OM (1) whole slurry, (2) solid, and (3) liquid phase of cattle slurry after mechanical separation. A laboratory experiment was carried out using five REOs (La, Gd, Sm, Pr, and Nd oxides) mixed directly into soil or mixed with various fractions of cattle slurry and then applied to the soil surface. In the additional grassland experiment, Gd oxide was spiked with soil and cattle slurry and then applied to the soil surface. The mineral N in the liquid phase (urine) of the slurry in the grassland experiment was labelled with 15N urea (16 atom%). In the laboratory experiment, results showed that the five REOs concentration of soil in 0–1 cm soil section after the rainfall simulation was still up to 20 times more than the background values. In 1–2 cm soil section, the concentration of only Gd (two fold higher) and La oxides (50% higher) were significantly higher than the soil background values. Therefore, we hypothesized that Gd and La oxides were associated also with relatively finer organic particles in slurry, thus 1–2 cm soil section were enriched with these oxides. The five REOs concentration below 2 cm soil depth were similar to the background values in all treatments. In line with the laboratory experiment, Gd concentrations in the deeper soil layers (2–4 and 4–8 cm) in the grassland experiment were not significantly affected by any treatment. Both in grassland and laboratory experiment, solid phase of the slurry (dung) was collected from the soil surface after rainfall simulation. Here, about 56% of REOs were measured on the solid phase of the slurry which indicates the strong binding potential of REOs on slurry OM. The present novel study, where REO tagged slurry was uniquely tested to study geochemical cycle of organic fertilizers, clearly highlighted the potential for their use as multiple-tracers of (animal derived-) OM in agricultural soils.
    Full-text · Article · Feb 2015 · Journal of Plant Nutrition and Soil Science
  • Source
    Raul Ochoa-Hueso · Carly J Stevens
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrogen (N) deposition is predicted to impact on the structure and functioning of Mediterranean ecosystems. In this study, we measured plant species composition, production and root phosphatase activity in a field experiment in which N (0, 10, 20 and 50 kg N ha−1 year−1) was added since October 2007 to a semiarid shrubland in central Spain. The characteristically dominant annual forb element responded negatively to N after ~2.5 and ~3.5 years. In contrast, the nitrophilous element (mainly crucifers) increased with N after ~2.5 and ~5.5 years, a response controlled by between-year variations in rainfall and the heterogeneous distribution of P availability. We also described a hierarchy of factors driving the structure and composition of the plant community: soil fertility was the most important driver, whereas calcareousness/acidity of soils and shrub cover played a secondary role; finally, N deposition contributed to explain a smaller fraction of the total variance, and its effects were predominantly negative, which was attributed to ammonium toxicity. Root phosphatase activity of three species was not responsive to N after ~2.5 years but there was a negative relationship with soil P in two of them. We conclude that increased N deposition in semiarid Mediterranean ecosystems of Europe can contribute to cause a shift in plant communities associated with an increase in the nitrophilous element and with a decline in abundance of various forb species adapted to the local conditions.
    Full-text · Article · Feb 2015 · Water Air and Soil Pollution
  • Source

    Full-text · Dataset · Jan 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aboveground-belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m(2) plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity. © 2014 John Wiley & Sons Ltd/CNRS.
    Full-text · Article · Nov 2014 · Ecology Letters
  • Source
    A Pannek · C Duprè · D J G Gowing · C J Stevens · M Diekmann
    [Show abstract] [Hide abstract]
    ABSTRACT: Anthropogenic eutrophication impacts ecosystems worldwide. Here, we use a vegetation dataset from semi-natural grasslands on acidic soils sampled along a gradient in north-western Europe to examine the response of species frequency to nitrogen (N) deposition, controlling for the effects of other environmental variables. A second dataset of acidic grasslands from Germany and the Netherlands containing plots from different time periods was analysed to examine whether the results of the spatial gradient approach coincided with temporal changes in the abundance of species. Out of 44 studied species, 16 were affected by N deposition, 12 of them negatively. Soil pH and phosphorus (P) influenced 24 and 14 species, respectively, predominantly positively. Fewer species were related to the soil contents of NO3 − or NH4 +, with no significant differences between the number of positive and negative effects. Whereas the temporal change of species was unrelated to their responses to pH, species responding negatively to N deposition, soil P and NO3 − showed a significant decline over time in both countries. Species that were negatively affected by high N deposition and/or high soil P also showed a negative temporal trend and could be characterised by short stature and slow growth. The results confirm the negative role of N deposition for many plant species in semi-natural acidic grasslands. The negative temporal trends of species sensitive to high N deposition and soil P values clearly show a need for maintaining low soil nutrient status and for restoring the formerly infertile conditions in nutrient-enriched grasslands.
    Full-text · Article · Nov 2014 · Oecologia
  • Source

    Full-text · Dataset · Aug 2014
  • Source
    M. Silgram · J. Quinton · C. Stevens · B. Jackson · A. Bailey

    Full-text · Dataset · Aug 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim Evidence linking the accumulation of exotic species to the suppression of native diversity is equivocal, often relying on data from studies that have used different methods. Plot-level studies often attribute inverse relationships between native and exotic diversity to competition, but regional abiotic filters, including anthropogenic influences, can produce similar patterns. We seek to test these alternatives using identical scale-dependent sampling protocols in multiple grasslands on two continents. Location Thirty-two grassland sites in North America and Australia. Methods We use multiscale observational data, collected identically in grain and extent at each site, to test the association of local and regional factors with the plot-level richness and abundance of native and exotic plants. Sites captured environmental and anthropogenic gradients including land-use intensity, human population density, light and soil resources, climate and elevation. Site selection occurred independently of exotic diversity, meaning that the numbers of exotic species varied randomly thereby reducing potential biases if only highly invaded sites were chosen. Results Regional factors associated directly or indirectly with human activity had the strongest associations with plot-level diversity. These regional drivers had divergent effects: urban-based economic activity was associated with high exotic : native diversity ratios; climate- and landscape-based indicators of lower human population density were associated with low exotic : native ratios. Negative correlations between plot-level native and exotic diversity, a potential signature of competitive interactions, were not prevalent; this result did not change along gradients of productivity or heterogeneity. Main conclusion We show that plot-level diversity of native and exotic plants are more consistently associated with regional-scale factors relating to urbanization and climate suitability than measures indicative of competition. These findings clarify the long-standing difficulty in resolving drivers of exotic diversity using single-factor mechanisms, suggesting that multiple interacting anthropogenic-based processes best explain the accumulation of exotic diversity in modern landscapes.
    Full-text · Article · Jul 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nutrient pollution presents a serious threat to biodiversity conservation. In terrestrial ecosystems, the deleterious effects of nitrogen pollution are increasingly understood and several mitigating environmental policies have been developed. Compared to nitrogen, the effects of increased phosphorus have received far less attention, although some studies have indicated that phosphorus pollution may be detrimental for biodiversity as well. Based on a dataset covering 501 grassland plots throughout Europe, we demonstrate that, independent of the level of atmospheric nitrogen deposition and soil acidity, plant species richness was consistently negatively related to soil phosphorus. We also identified thresholds in soil phosphorus above which biodiversity appears to remain at a constant low level. Our results indicate that nutrient management policies biased towards reducing nitrogen pollution will fail to preserve biodiversity. As soil phosphorus is known to be extremely persistent and we found no evidence for a critical threshold below which no environmental harm is expected, we suggest that agro-environmental schemes should include grasslands that are permanently free from phosphorus fertilization. This article is protected by copyright. All rights reserved.
    Full-text · Article · Jun 2014 · Global Change Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human alterations to nutrient cycles1, 2 and herbivore communities3, 4, 5, 6, 7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems8, 9. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.
    Full-text · Article · Apr 2014 · Nature
  • [Show abstract] [Hide abstract]
    ABSTRACT: We aimed to answer the question of whether the species richness and composition of calcareous grasslands in North-western Germany had changed over the last 70 years as a result of atmospheric nitrogen (N) deposition. In total, 1186 plots of Festuco-Brometea (alliance Bromion erecti) grasslands from the sub-oceanic regions of the country were compiled (1061 plots from literature sources spanning a time period from 1936 to 1996, 125 new plots from 2008). Environmental descriptors recorded for each plot included geographic coordinates, altitude, heat index (combining slope and aspect), mean Ellenberg indicator values for light, soil moisture, soil pH and soil N, and cumulative N deposition (the latter being highly positively correlated with the year of sampling). In a Detrended Correspondence Analysis, the sample plot scores along axis one were highly correlated with the mean Ellenberg N-values, those along axis two were significantly affected by the year of sampling. In a general linear model, species richness of vascular plants showed a markedly hump-shaped relationship with mean Ellenberg N-value, whereas it was weakly affected by year (cumulative N load). Species with a significant negative trend over time were more often (than expected by chance) habitat specialists of dry grasslands, small, light-demanding and winter-green or evergreen with smaller seeds and scleromorphic leaves. In contrast to what has been found for acidic grasslands, N deposition in calcareous grasslands did not result in a decline in species richness, most likely because calcareous grasslands are water- and phosphorus-limited, and are well-buffered in terms of soil pH. To prevent a further change in species composition towards more mesophytic communities, grassland management by the site managers needs to be intensified.
    No preview · Article · Apr 2014 · Biological Conservation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in biodiversity are greatest at the lowest and initial stages of N deposition increase; changes in species compositions are related to the relative amounts of N, carbon (C) and phosphorus (P) in the plant soil system; enhanced N inputs have implications for C cycling; N deposition is known to be having adverse effects on European and North American vegetation composition; very little is known about tropical ecosystem responses, while tropical ecosystems are major biodiversity hotspots and are increasingly recipients of very high N deposition rates; N deposition alters forest fungi and mycorrhyzal relations with plants; the rapid response of forest fungi and arthropods makes them good indicators of change; predictive tools (models) that address ecosystem scale processes are necessary to address complex drivers and responses, including the integration of N deposition, climate change and land use effects; criteria can be identified for projecting sensitivity of terrestrial and aquatic ecosystems to N deposition. Future research and policy-relevant recommendations are identified.
    Full-text · Chapter · Apr 2014

Publication Stats

2k Citations
492.05 Total Impact Points

Institutions

  • 2006-2015
    • Lancaster University
      • Lancaster Environment Centre
      Lancaster, England, United Kingdom
  • 2006-2013
    • Milton Keynes College
      Milton Keynes, England, United Kingdom
  • 2011
    • Utah State University
      Logan, Ohio, United States
  • 2009
    • Manchester Metropolitan University
      • School of Science and The Environment
      Manchester, England, United Kingdom
  • 2008
    • Universitat Oberta de Catalunya
      Barcino, Catalonia, Spain