Allison Lacko

Columbia University, New York, New York, United States

Are you Allison Lacko?

Claim your profile

Publications (2)2.27 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arsenic is a prevalent contaminant at US Superfund sites where remediation by pump and treat systems is often complicated by slow desorption of As from Fe and Al (hydr)oxides in aquifer solids. Chemical amendments that either compete with As for sorption sites or dissolve Fe and Al (hydr)oxides can increase As mobility and improve pump and treat remediation efficiency. The goal of this work was to determine optimal amendments for improving pump and treat at As contaminated sites such as the Vineland Chemical Co. Superfund site in southern New Jersey. Extraction and column experiments were performed using As contaminated aquifer solids (81 ± 1 mg/kg), site groundwater, and either phosphate (NaH(2)PO(4)·H(2)O) or oxalic acid (C(2)H(2)O(4)·2H(2)O). In extraction experiments, phosphate mobilized between 11% and 94% of As from the aquifer solids depending on phosphate concentration and extraction time (1 mM-1 M; 1-24 h) and oxalic acid mobilized between 38 and 102% depending on oxalic acid concentration and extraction time (1-400 mM; 1-24 h). In column experiments, phosphate additions induced more As mobilization in the first few pore volumes but oxalic acid was more effective at mobilizing As overall and at lower amendment concentrations. At the end of the laboratory column experiments, 48% of As had been mobilized from the aquifer sediments with 100 mM phosphate and 88% had been mobilized with 10 mM oxalic acid compared with 5% with ambient groundwater alone. Furthermore, simple extrapolations based on pore volumes suggest that chemical treatments could lower the time necessary for clean up at the Vineland site from 600 a with ambient groundwater alone to potentially as little as 4 a with 10 mM oxalic acid.
    Full-text · Article · Oct 2010 · Applied Geochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arsenic is a contaminant found at more than 500 US Superfund sites. Since pump and treat technologies are widely used for remediation of contaminated groundwater, increasing the efficiency of contaminant removal at such sites should allow limited financial resources to clean up more sites. The Vineland Chemical Company Superfund site is extensively contaminated with arsenic after waste arsenic salts were stored and disposed of improperly for much of the company's 44 year manufacturing lifetime. Despite approximately eight years of pump and treat remediation, arsenic concentrations in the recovery wells can still be greater than 1000 ppb. The arsenic concentrations in the groundwater remain high because of slow desorption of arsenic from contaminated aquifer solids. Extrapolation of laboratory column experiments suggest that continuing the current groundwater remediation practice based on flushing ambient groundwater through the system may require on the order of hundreds of years to clean the site. However, chemical additions of phosphate or oxalic acid into the aquifer could decrease the remediation time scale substantially. Laboratory results from a soil column experiment using input of 10 mM oxalic acid suggest that site clean up of groundwater could be decreased to as little as four years. Pilot scale forced gradient field experiments will help establish whether chemical additions can be effective for increasing arsenic mobilization from aquifer solids and thus substantially decrease pump and treat clean up time.
    No preview · Article · Dec 2008

Publication Stats

5 Citations
2.27 Total Impact Points

Top Journals


  • 2010
    • Columbia University
      • Department of Earth and Environmental Sciences
      New York, New York, United States