Are you J. Giacalone?

Claim your profile

Publications (1)3.43 Total impact

  • Source
    D. Winske · J. Giacalone · M. F. Thomsen · M. M. Mellott
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasma heating due to the ion acoustic instability and the modified two-stream instability is examined for quasi-perpendicular subcritical shocks. Electron and ion heating is investigated as a function of upstream electron to ion temperature ratio and plasma beta using second-order heating rates. A simple shock model is employed in which the cross-field electron-ion drift speed is adjusted until the total (adiabatic plus anomalous) heating matches that required by the Rankine-Hugoniot relations. Quantities such as the width of the shock and the maximum electric field fluctuations are also calculated, and the results are compared with the ISEE data set of subcritical bow shock crossings. The observed width of the shock, the amount of plasma heating, and the low-frequency electric field intensity are in reasonably good agreement with the calculations for the modified two-stream instability. On the other hand, the wave intensities at higher frequency are about 4 orders of magnitude smaller than those predicted for the ion acoustic instability at saturation, consistent with the fact that the measured shock widths imply cross-field drift speeds that are below threshold for this instability. It is therefore concluded that the dissipation at these shocks is most likely due to the lowest frequency, modified two-stream instability.
    Preview · Article · Jun 1987 · Journal of Geophysical Research Atmospheres