Yun-Feng Cao

Tianjin Medical University, T’ien-ching-shih, Tianjin Shi, China

Are you Yun-Feng Cao?

Claim your profile

Publications (39)99 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4(+) naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression.
    No preview · Article · Dec 2015 · Toxicology and Applied Pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. Fructus psoraleae (FP) is the dried ripe seeds of Psoralea corylifolia L. (Fabaceae) widely used in Asia, and has been reported to exert important biochemical and pharmacological activities. The adverse effects of FP remain unclear. The present study aims to determine the inhibition of human carboxylesterase 1 (CES1) by FP's major ingredients, including neobavaisoflavone, corylifolinin, coryfolin, psoralidin, corylin and bavachinin. 2. The probe substrate of CES1 2-(2-benzoyl-3-methoxyphenyl) benzothiazole (BMBT) was derived from 2-(2-hydroxy-3-methoxyphenyl) benzothiazole (HMBT), and human liver microsomes (HLMs)-catalyzed BMBT metabolism was used to phenotype the activity of CES1. In silico docking method was employed to explain the inhibition mechanism. 3. All the tested compounds exerted strong inhibition towards the activity of CES1 in a concentration-dependent behavior. Furthermore, the inhibition kinetics was determined for the inhibition of neobavaisoflavone, corylifolinin, coryfolin, corylin and bavachinin towards CES1. Both Dixon and Lineweaver-Burk plots showed that neobavaisoflavone, corylifolinin, coryfolin and corylin noncompetitively inhibited the activity of CES1, and bavachinin competitively inhibited the activity of CES1. The inhibition kinetic parameters (Ki) were calculated to be 5.3, 9.4, 1.9, 0.7 and 0.5 μM for neobavaisoflavone, corylifolinin, coryfolin, corylin and bavachinin, respectively. In conclusion, the inhibition behavior of CES1 by the FP's constituents was given in this article, indicating the possible adverse effects of FP through the disrupting CES1-catalyzed metabolism of endogenous substances and xenobiotics.
    Full-text · Article · Nov 2015 · Xenobiotica
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wide utilization of phthalates-containing products results in the significant exposure of humans to these compounds. Many adverse effects of phthalates have been documented in rodent models, but their effects in humans exposed to these chemicals remain unclear until more mechanistic studies on phthalate toxicities can be carried out. To provide new insights to predict the potential adverse effects of phthalates in humans, the recent study investigated the inhibition of representative phthalates di-n-octyl ortho-phthalate (DNOP) and diphenyl phthalate (DPhP) towards the important xenobiotic and endobiotic-metabolizing UDP-glucuronosyltransferases (UGTs). An in vitro UGTs incubation system was employed to study the inhibition of DNOP and DPhP towards UGT isoforms. DPhP and DNOP weakly inhibited the activities of UGT1A1, UGT1A7, and UGT1A8. 100 μM of DNOP inhibited the activities of UGT1A3, UGT1A9, and UGT2B7 by 41.8% (p < 0.01), 45.6% (p < 0.01), and 48.8% (p < 0.01), respectively. 100 μM of DPhP inhibited the activity of UGT1A3, UGT1A6, and UGT1A9 by 81.8 (p < 0.001), 49.1% (p < 0.05), and 76.4% (p < 0.001), respectively. In silico analysis was used to explain the stronger inhibition of DPhP than DNOP towards UGT1A3 activity. Kinetics studies were carried our to determine mechanism of inhibition of UGT1A3 by DPhP. Both Dixon and Lineweaver-Burk plots showed the competitive inhibition of DPhP towards UGT1A3. The inhibition kinetic parameter (Ki) was calculated to be 0.89 μM. Based on the [I]/Ki standard ([I]/Ki < 0.1, low possibility; 1>[I]/Ki > 0.1, medium possibility; [I]/Ki > 1, high possibility), these studies predicted in vivo drug-drug interaction might occur when the plasma concentration of DPhP was above 0.089 μM. Taken together, this study reveales the potential for adverse effects of phthalates DNOP and DPhP as a result of UGT inhibition.
    No preview · Article · Nov 2015 · Chemosphere
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drug-metabolizing enzymes inhibition-based drug-drug interaction remains to be the key limiting factor for the research and development of efficient herbal components to become clinical drugs. The present study aims to determine the inhibition of uridine 5'-diphospho-glucuronosyltransferases (UGTs) isoforms by two important efficient herbal ingredients isolated from Atractylodes macrocephala Koidz, atractylenolide I and III. In vitro recombinant UGTs-catalysed glucuronidation of 4-methylumbelliferone was used to determine the inhibition capability and kinetics of atractylenolide I and III towards UGT2B7, and in silico docking method was employed to explain the possible mechanism. Atractylenolide I and III exhibited specific inhibition towards UGT2B7, with negligible influence towards other UGT isoforms. Atractylenolide I exerted stronger inhibition potential than atractylenolide III towards UGT2B7, which is attributed to the different hydrogen bonds and hydrophobic interactions. Inhibition kinetic analysis was performed for the inhibition of atractylenolide I towards UGT2B7. Inhibition kinetic determination showed that atractylenolide I competitively inhibited UGT2B7, and inhibition kinetic parameter (Ki) was calculated to be 6.4 μM. In combination of the maximum plasma concentration of atractylenolide I after oral administration of 50 mg/kg atractylenolide I, the area under the plasma concentration-time curve ration AUCi /AUC was calculated to be 1.17, indicating the highly possible drug-drug interaction between atractylenolide I and drugs mainly undergoing UGT2B7-catalysed metabolism. Copyright © 2015 John Wiley & Sons, Ltd.
    No preview · Article · Nov 2015 · Phytotherapy Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As an edible traditional Chinese herb, Fructus Psoraleae (FP) has been widely used in Asia for the treatment of vitiligo, bone fracture and osteoporosis. Several cases on markedly elevated bilirubin and acute liver injury following administration of FP and its related proprietary medicine have been reported, but the mechanism in FP-associated toxicity has not been well investigated yet. This study aimed to investigate the inhibitory effects of FP extract and its major constituents against human UDP-glucuronosyltransferase 1A1 (UGT1A1), the key enzyme responsible for metabolic elimination of bilirubin. To this end, N-(3-carboxy propyl)-4-hydroxy-1,8-naphthalimide (NCHN), a newly developed specific fluorescent probe for UGT1A1, was used to evaluate the inhibitory effects of FP extract or its fractions in human liver microsomes (HLM), while LC-UV fingerprint and UGT1A1 inhibition profile were combined to identity and characterize the naturally occurring inhibitors of UGT1A1 in FP. Our results demonstrated that both the extract of FP and five major components of FP displayed evident inhibitory effects on UGT1A1 in HLM. Among these five identified naturally occurring inhibitors, bavachin and corylifol A were found to be strong inhibitors of UGT1A1 with the inhibition kinetic parameters (Ki) values lower than 1 μM, while neobavaisoflavone, isobavachalcone, and bavachinin displayed moderate inhibitory effects against UGT1A1 in HLM, with the Ki values ranging from 1.61 to 9.86 μM. These findings suggested that FP contains natural compounds with potent inhibitory effects against human UGT1A1, which may be one of the important reasons for triggering FP-associated toxicity, including elevated bilirubin levels and liver injury.
    Full-text · Article · Sep 2015 · Toxicology and Applied Pharmacology
  • Da-li Meng · Li-huan Xu · Chao Chen · Dan Yan · Zhong-ze Fang · Yun-feng Cao
    [Show abstract] [Hide abstract]
    ABSTRACT: Stauntonia brachyanthera Hand-Mazz., an evergreen shrub belonging to the family of Lardizabalaceae, is traditionally used in China to treat various diseases. Its fruit, zhuyaozi, is extremely popular in the southwest of China because of its fresh taste and abundant nutrients. The chemical study on this fruit resulted in the isolation of eight new nor-oleanane type triterpenoid saponins, brachyanthera acid A, brachyantheraoside A1–A5 and brachyantheraoside B6, B9, along with nine known compounds. Their structures were determined by extensive 1D and 2D NMR experiments along with HRESIMS analysis. Nine compounds including four new ones showed hepatoprotective activities against DL-galactosamine-induced toxicity in WB-F344 cells, with their survival rates being very close to that of bicyclol. Additionally, the results of the inhibitory study of brachyantheraoside A5 (15) on 4-MU glucuronidation indicated its less probability leading to drug–drug interaction, which revealed that brachyantheraoside A5 and its analogues might be new safe leading compounds for further investigation as hepatoprotectants.
    No preview · Article · Jun 2015 · Journal of Functional Foods
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zaltoprofen (ZLT) is a nonsteroidal antiinflammation drug, and has been clinically employed to treat rheumatoid arthritis, osteoarthritis, and other chronic inflammatory pain conditions. The present study aims to investigate the chirality influence of zaltoprofen towards the inhibition potential towards UDP-glucuronosyltransferases (UGTs) isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation system was employed to investigate the inhibition of (R)-zaltoprofen and (S)-zaltoprofen towards UGT isoforms. The inhibition difference capability was observed for the inhibition of (R)-zaltoprofen and (S)-zaltoprofen towards UGT1A8 and UGT2B7, but not for other tested UGT isoforms. (R)-zaltoprofen exhibited noncompetitive inhibition towards UGT1A8 and competitive inhibition towards UGT2B7. The inhibition kinetic parameters were calculated to be 35.3 μM and 19.2 μM for UGT1A8 and UGT2B7. (R)-zaltoprofen and (S)-zaltoprofen exhibited a different inhibition type towards UGT1A7. Based on the reported maximum plasma concentration of (R)-zaltoprofen in vivo, a high drug-drug interaction between (R)-zaltoprofen and the drugs mainly undergoing UGT1A7, UGT1A8, and UGT2B7-catalyzed glucuronidation was indicated. Chirality 00:000-000, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Apr 2015 · Chirality
  • [Show abstract] [Hide abstract]
    ABSTRACT: UDP-glucuronosyltransferases (UGTs) are involved in the clearance of many important drugs and endogenous substances, and inhibition of UGTs' activity by herbal components might induce severe herb-drug interactions or metabolic disturbances of endogenous substances. The present study aims to determine the inhibition of UGTs' activity by podophyllotoxin derivatives, trying to indicate the potential herb-drug interaction or metabolic influence towards endogenous substances' metabolism. Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the podophyllotoxin derivatives' inhibition potential. Structure-dependent inhibition behavior of podophyllotoxin derivatives towards UGT isoforms was detected. Inhibition kinetic type and parameter (Ki) were determined for the inhibition of podophyllotoxin towards UGT1A1, and competitive inhibition of podophyllotoxin towards UGT1A1 was observed with the inhibition kinetic parameter (Ki) to be 4.0 μM. Furthermore, podophyllotoxin was demonstrated to exert medium and weak inhibition potential towards human liver microsomes (HLMs)-catalyzed SN-38 glucuronidation and estradiol-3-glucuronidation. In conclusion, podophyllotoxin inhibited UGT1A1 activity, indicating potential herb-drug interactions between podophyllotoxin-containing herbs and drugs mainly undergoing UGT1A1-mediated metabolism.
    No preview · Article · Apr 2015 · Pharmazie
  • [Show abstract] [Hide abstract]
    ABSTRACT: UDP-glucuronosyltransferases (UGTs)-catalyzed glucuronidation conjugation reaction plays an important role in the elimination of many important clinical drugs and endogenous substances. The present study aims to investigate the enantioselective inhibition of carprofen towards UGT isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation mixture was used to screen the inhibition potential of (R)-carprofen and (S)-carprofen towards multiple UGT isoforms. The results showed that (S)-carprofen exhibited stronger inhibition potential than (R)-carprofen towards UGT2B7. However, no significant difference was observed for the inhibition of (R)-carprofen and (S)-carprofen towards other UGT isoforms. Furthermore, the inhibition kinetic behavior was compared for the inhibition of (S)-carprofen and (R)-carprofen towards UGT2B7. A Lineweaver-Burk plot showed that both (S)-carprofen and (R)-carprofen exhibited competitive inhibition towards UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameter (Ki ) was calculated to be 7.0 μM and 31.1 μM for (S)-carprofen and (R)-carprofen, respectively. Based on the standard for drug-drug interaction, the threshold for (S)-carprofen and (R)-carprofen to induce a drug-drug interaction is 0.7 μM and 3.1 μM, respectively. In conclusion, enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7 was demonstrated in the present study. Using the in vitro inhibition kinetic parameter, the concentration threshold of (S)-carprofen and (R)-carprofen to possibly induce the drug-drug interaction was obtained. Therefore, clinical monitoring of the plasma concentration of (S)-carprofen is more important than (R)-carprofen to avoid a possible drug-drug interaction between carprofen and the drugs mainly undergoing UGT2B7-catalyzed metabolism. Chirality 00:000-000, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
    No preview · Article · Dec 2014 · Chirality
  • Xu Liang · Zhi-guo Liu · Yun-Feng Cao · Da-li Meng · Hui-ming Hua
    [Show abstract] [Hide abstract]
    ABSTRACT: The phytochemical investigation of two plants from genus Euphorbia, Euphorbia fischeriana Steud and Euphorbia ebracteolata Hayata led to the isolation of 28 compounds. Among them, 1–3, 12–13, 20–21, 23–25, and 28 were obtained from E. fischeriana. 14–19, and 22 were acquired from E. ebracteolata. 4–11, and 26–27 were found in both of species, and 20 and 28 are isolated from E. fischeriana for the first time. In addition, acetophenone derivatives (7–9) and diterpenes (10–25) are the basis of E. fischeriana and E. ebracteolata. The abietane, atisane, and kaurane types of diterpenes and acetophenone derivatives could be regarded as good taxonomic markers for two medicinal plants, while lupane type triterpenoids,tigliane type diterpenoids and rosane diterpenes demonstrated differences of the two species.
    No preview · Article · Dec 2014 · Biochemical Systematics and Ecology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism of shengmai injection- (SMI-) related drug-drug interaction remains unclear. Evaluation of the inhibition potential of SMI's ingredients towards UDP-glucuronosyltransferases (UGTs) activity will provide a new insight to understand SMI-related drug-drug interaction. In vitro incubation system to model UGT reaction was used. Recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation reactions were employed to phenotype the inhibition profile of maidong's components towards the activity of UGT isoforms. Different inhibition potential of maidong's components towards various UGT isoforms was observed. Based on the inhibition kinetic investigation results, ophiopogonin D (OD) noncompetitively inhibited UGT1A6 and competitively inhibited UGT1A8, ophiopogonin D' (OD') noncompetitively inhibited UGT1A6 and UGT1A10, and ruscorectal (RU) exhibited competitive inhibition towards UGT1A4. The inhibition kinetic parameters were calculated to be 20.6, 40.1, 5.3, 9.0, and 0.02 μM, respectively. In combination with our previous results obtained for the inhibition of UGT isoforms by ginsenosides and wuweizi components, the important SMI ingredients exhibiting strong inhibition towards UGT isoforms were highlighted. All the results obtained in the present study provide a new insight to understand SMI-related drug-drug interaction.
    Preview · Article · Oct 2014 · Evidence-based Complementary and Alternative Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract 1. Endogenous compounds have been reported to be the regulators of UDP-glucuronosyltransferases (UGTs) isoforms. This study aims to investigate the regulatory effects of the activity of UGT isoforms by two important lipid components phosphatidylcholine (PC) and lysophosphatidylcholines (LPC) using in vitro incubation system. 2. UGTs supersomes-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used as the probe reaction to evaluate the inhibition of compounds towards UGT isoforms except UGT1A4, and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation reaction was utilized to phenotype the activity of UGT1A4. 3. About 50 μM of LPC15:0, LPC16:0, LPC17:0, LPC18:0, LPC18:1 and PC16:0, 2:0 exhibited inhibition towards more than 90% activity of UGT isoforms, and other LPC and PC components showed negligible inhibitory potential towards all the UGT isoforms. UGT1A6 and UGT1A8 were identified to be the most sensitive UGT isoforms susceptible for the inhibition by LPC15:0, LPC16:0, LPC17:0, LPC18:0, LPC18:1 and PC16:0, 2:0, indicating the strong influence of these LPC and PC components towards UGT1A6 and UGT1A8-catalyzed metabolic reaction when the concentrations of these components increased.
    No preview · Article · Sep 2014 · Xenobiotica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new ratiometric fluorescent probe derived from 2-(2-hydroxy-3-methoxyphenyl) benzothiazole (HMBT) has been developed for selective monitoring of human carboxylesterase 1 (hCE1). The probe is designed by introducing benzoyl moiety to HMBT. The prepared latent spectroscopic probe 1 displays satisfying stability under physiological pH conditions with very low background signal. Both the reaction phynotyping and chemical inhibition assays demonstrated that hCE1 mediated the specific cleavage of the carboxylic ester bond of probe 1 in human biological samples. The release of HMBT leads to a remarkable red-shifted emission in fluorescence spectrum (120 nm large emission shift). Furthermore, human cell-based assays show that probe 1 is cell membrane permeable, and it can be used for bioassay and cellular imaging of hCE1 activity in HepG2 cells. These findings lead to the development of a simple and sensitive fluorescent method for measurement of hCE1 activity in vitro or in living cells, in the presence of additional enzymes or endogenous compounds.
    Full-text · Article · Jul 2014 · Biosensors & Bioelectronics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herb-drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (Ki) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsomes (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behaviour. In combination of inhibition parameters (Ki) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb-drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7.
    No preview · Article · May 2014 · Toxicology and Applied Pharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bakuchiol is a promising anti-tumor candidate with resveratrol-like structure. The present study aims to evaluate the inhibition potential of bakuchiol towards UDP-glucuronosyltransferases (UGT) 1A isoforms. An in vitro incubation system using 4-methylumbelliferone (4-MU) glucuronidation was used to evaluate the inhibition capability of bakuchiol towards UGT1A1, 1A3, 1A6, 1A7, 1A8, 1A9 and 1A10. The glucuronidation of trifluoperazine (TFP) was employed as the probe reaction to determine bakuchiol's inhibition towards UGT1A4. At 1 microM and 10 microM of bakuchiol, no or weak inhibition was observed for all the tested UGT1A isoforms. At 100 microM of bakuchiol, the activity of UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9 and 1A10 was inhibited by -46.2%, 74.7%, 17.8%, 98.7%, 70.4%, 99.2%, 75.8%, and 93.3%, respectively. Further inhibition kinetic behaviour was determined for UGT1A6, 1A8, and 1A10. Both Dixon plot and Lineweaver-Burk plot showed the noncompetitive inhibition of bakuchiol towards all these three UGT isoforms. The inhibition kinetic parameters (Ki) were calculated to be 5.3, 1.8, and 92.6 microM for UGT1A6, 1A8, and 1A10, respectively. In combination with the in vivo exposure of bakuchiol, the high possibility of in vivo inhibition of UGT1A6 and 1A8 was predicted. However, relatively low possibility of in vivo inhibition towards UGT1A10 was predicted due to lower in vivo concentration of bakuchiol than its inhibition parameter (Ki). All these information will be helpful for the R&D of bakuchiol as a promising anti-tumor drug.
    No preview · Article · Mar 2014 · Pharmazie
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scutellarin is an important bioactive flavonoid extracted from Erigeron breviscapus (Vant.) Hand-Mazz, and scutellarein is the corresponding aglycone of scutellarin. The present study aims to compare the inhibition potential of scutellarin and scutellarein towards several important UDP-glucuronosyltransferase (UGT) isoforms, including UGT1A1, UGT1A6, UGT1A9 and UGT2B7. It was demonstrated that scutellarein exerted stronger inhibition towards the tested UGT isoforms than scutellarin. Furthermore, the inhibition kinetic type and parameters (Ki ) were determined for the scutellarein's inhibition towards these UGT isoforms. Competitive inhibition of scutellarein towards all these UGT isoforms was demonstrated, and the Ki values were calculated to be 0.02, 5.0, 5.8 and 35.9 μM for UGT1A1, 1A6, 1A9 and 2B7, respectively. Using in vivo maximum plasma concentration of scutellarein in rat, the in vitro-in vivo extrapolation was performed to predict in vivo situation, indicating the most possible in vivo adverse effects due to the inhibition of scutellarein towards UGT1A1. All these results remind us to monitor the utilization of scutellarin and scutellarein, and the herbs containing these two components. Copyright © 2013 John Wiley & Sons, Ltd.
    No preview · Article · Mar 2014 · Phytotherapy Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bufalin 5β-hydroxylation was found to be an isoform-specific biotransformation probe substrate for cytochrome P450 3A4 (CYP3A4). The probe reaction was well-characterized and it can be used for measuring the real catalytic activities of CYP3A4 from different enzyme sources.
    Full-text · Article · Sep 2013 · Chemical Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study is to evaluate the inhibitory effects of liver UDP-glucuronosyltransferases (UGTs) by glycyrrhizic acid and glycyrrhetinic acid, which are the bioactive ingredients isolated from licorice. The results showed that glycyrrhetinic acid exhibited stronger inhibition towards all the tested UGT isoforms, indicating that the deglycosylation process played an important role in the inhibitory potential towards UGT isoforms. Furthermore, the inhibition kinetic type and parameters were determined for the inhibition of glycyrrhetinic acid towards UGT1A3 and UGT2B7. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that the inhibition of UGT1A3 and UGT2B7 by glycyrrhetinic acid was best fit to competitive and noncompetitive type, respectively. The second plot using the slopes from Lineweaver-Burk plots versus glycyrrhetinic acid concentrations was employed to calculate the inhibition kinetic parameters (K(i) ), and the values were calculated to be 0.2 and 1.7 μM for UGT1A3 and UGT2B7, respectively. All these results remind us the possibility of UGT inhibition-based herb-drug interaction. However, the explanation of these in vitro parameters should be paid more caution due to complicated factors, including the probe substrate-dependent UGT inhibition behaviour, environmental factors affecting the abundance of herbs' ingredients, and individual difference of pharmacokinetic factors. Copyright © 2012 John Wiley & Sons, Ltd.
    No preview · Article · Sep 2013 · Phytotherapy Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bisphenol A (BPA), the important endocrine-disrupting chemical (EDC), has been reported to be able to induce various toxicity. The present study aims to understand the toxicity behavior of bisphenol A through evaluating the inhibition profile of bisphenol A towards UDP-glucuronosyltransferase (UGT) isoforms. In vitro recombinant UGTs-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed as probe reaction for all the tested UGT isoforms. The results showed that bisphenol A exerted stronger inhibition towards UGT2B isoforms than UGT1A isoforms. Furthermore, the inhibition kinetic type and parameters (Ki) were determined for the inhibition of bisphenol A towards UGT2B4, 2B7, 2B15, and 2B17. Bisphenol A exhibited the competitive inhibition towards UGT2B4, and noncompetitive inhibition towards UGT2B7, 2B15 and 2B17. The inhibition kinetic parameters (Ki) were calculated to be 1.1, 32.6, 5.6, and 19.9μM for UGT2B4, 2B7, 2B15 and 2B17, respectively. In combination with the in vivo concentration of bisphenol A, the elevation of exposure dose was predicted to increase by 29.1%, 1%, 5.7%, and 1.6% for UGT2B4, 2B7, 2B15, and 2B17, indicating the high influence of bisphenol A towards the in vivo UGT2B isofroms-mediated metabolism of xenobiotics and endogenous substances. All these data provide the supporting information for deeper understanding of toxicology of bisphenol A.
    Full-text · Article · Aug 2013 · Chemosphere
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The detailed mechanisms on licorice-drug interaction remain to be unclear. The aim of the present study is to investigate the inhibition of important UGT isoforms by two important ingredients of licorice, liquiritin, and liquiritigenin. The results showed that liquiritigenin exhibited stronger inhibition towards all the tested UGT isoforms than liquiritin. Data fitting using Dixon and Lineweaver-Burk plots demonstrated the competitive inhibition of liquiritigenin towards UGT1A1 and UGT1A9-mediated 4-MU glucuronidation reaction. The inhibition kinetic parameters (K(i) ) were calculated to be 9.1 and 3.2 μM for UGT1A1 and UGT1A9, respectively. Substrate-dependent inhibition behaviour was also observed for UGT1A1 in the present study. All these results will be helpful for understanding the deep mechanism of licorice-drug interaction. However, when translating these in vitro parameters into in vivo situations, more complex factors should be considered, such as substrate-dependent inhibition of UGT isoforms, the contribution of UGT1A1 and UGT1A9 towards the metabolism of drugs, and many factors affecting the abundance of ingredients in the licorice. Copyright © 2012 John Wiley & Sons, Ltd.
    Full-text · Article · Aug 2013 · Phytotherapy Research

Publication Stats

308 Citations
99.00 Total Impact Points

Institutions

  • 2015
    • Tianjin Medical University
      T’ien-ching-shih, Tianjin Shi, China
    • Dalian Institute of Chemical Physics
      Lü-ta-shih, Liaoning, China
  • 2012-2015
    • Shanghai Institute of Planned Parenthood Research
      Shanghai, Shanghai Shi, China
  • 2013-2014
    • Liaoning Medical University
      Liaonan, Jiangxi Sheng, China
  • 2011-2013
    • Chinese Academy of Sciences
      • Dalian Institute of Chemical Physics
      Peping, Beijing, China
  • 2009-2011
    • Shenyang Pharmaceutical University
      • Department of Traditional Chinese Medicine
      Feng-t’ien, Liaoning, China
  • 2010
    • Jinan University (Guangzhou, China)
      Shengcheng, Guangdong, China