T.J. Jackson

Universität Bremen, Bremen, Bremen, Germany

Are you T.J. Jackson?

Claim your profile

Publications (197)185.14 Total impact

  • Source

    Full-text · Dataset · Feb 2015
  • Source

    Full-text · Dataset · Feb 2015
  • Source

    Full-text · Dataset · Feb 2015
  • Source
    Dataset: IGARSS95

    Full-text · Dataset · Jan 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Satellite-based passive microwave remote sensing has been shown to be a valuable tool in mapping and monitoring global soil moisture. The Advanced Microwave Scanning Radiometer on the Aqua platform (AMSR-E) has made significant contributions to this application. As the result of agency and individual initiatives, several approaches for the retrieval of soil moisture from AMSR-E have been proposed and implemented. Although the majority of these are based on the same Radiative Transfer Equation, studies have shown that the resulting soil moisture estimates can differ significantly. A primary goal of this investigation is to understand these differences and develop a suitable approach to potentially improve the algorithm currently used by NASA in producing its operational soil moisture product. In order to achieve this goal, the theoretical basis of several alternative soil moisture retrieval algorithms are examined. Analysis has focused on five established approaches: the operational algorithm adopted by NASA, which is referred to as the Normalized Polarization Difference algorithm, the Single Channel Algorithm, the Land Parameter Retrieval Model, the University of Montana soil moisture algorithm, and the HydroAlgo Artificial Neural Network algorithm. Previous comparisons of these algorithms in the literature have typically focused on the retrieved soil moisture products, and employed different metrics and data sets, and have resulted in differing conclusions. In this investigation we attempt to provide a more thorough understanding of the fundamental differences between the algorithms and how these differences affect their performance in terms of range of soil moisture provided. The comparative overview presented in the paper is based on the operating versions of the source codes of the individual algorithms. Analysis has indicated that the differences between algorithms lie in the specific parameterizations and assumptions of each algorithm. The comparative overview of the theoretical basis of the approaches is linked to differences found in the soil moisture retrievals, leading to suggestions for improvements and increased reliability in these algorithms.
    Full-text · Article · Mar 2014 · Remote Sensing of Environment
  • T.J. Jackson · M. Cosh · W. Crow
    [Show abstract] [Hide abstract]
    ABSTRACT: The Soil Moisture Active Passive (SMAP) satellite is scheduled for launch in the fall of 2014. This chapter reviews some of the best practices as related to soil moisture validation using in situ network observations that have been incorporated. There are four primary reasons why calibration and validation are necessary for a successful satellite mission: mission requirements, quality assurance, data integration, and science. The chapter provides an overview of some of the issues that were addressed in the development of the SMAP Calibration/Validation (Cal/Val) Plan. It discusses some sources of available guidance on the design of a validation program. The chapter then considers how this translates to soil moisture. In situ observations play a major role in the validation of satellite-based soil moisture and several aspects of using these data resources are discussed. Finally, the chapter describes the implementation of these ideas into the SMAP Cal/Val plan.
    No preview · Article · Jan 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of using a Numerical Weather Prediction (NWP) soil temperature product instead of estimates provided by concurrent 37 GHz data on satellite-based passive microwave retrieval of soil moisture was evaluated. This was prompted by the change in system configuration of preceding multi-frequency satellites to new single frequency L-band missions. In situ soil moisture data from four watershed sites in the USA were used to assess this change with one soil moisture retrieval algorithm. The temperature product substitution resulted in a large decrease in sensitivity to in situ soil moisture changes, and illustrates the complications of moving from a coincident source to interpolation of modelled temperature.
    No preview · Article · Jan 2012
  • R. Bindlish · T.J. Jackson · Y. Wang · J.C. Shi · J. Basara
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cloud Land Surface Interaction Campaign (CLASIC) was conducted in Oklahoma during the summer of 2007, with a primary focus on the interaction between cloud formation and land surface processes, including surface soil moisture. Passive microwave observations were used to study the evolution of soil moisture conditions over the Southern Great Plains and to evaluate the potential of using this data to monitor and map flooded areas. The analyses presented here used the TMI satellite instrument. As part of the investigation, the effect of atmospheric water vapour on the microwave observations was evaluated. Atmospheric water vapour effects can be significant for high frequency microwave observations (as much as 50 K. for 89 GHz and 20 K. for 36.5 GHz). The effect of atmospheric water vapour decreases significantly for low frequency observations (4 K for 10 GHz). Soil moisture estimates were validated using ground and meteorological observations. The estimated soil moisture was in good agreement with in situ observations (RMSE = 0.044 m3/m 3) and reflected the temporal variations resulting from precipitation events. The range and variability of estimated soil moisture was a function of land surface variables (vegetation and soils). Reliable soil moisture estimates will contribute to the study of the interaction between cloud formation and land surface.
    No preview · Article · Jan 2012
  • M.H. Cosh · J. Prueger · T.J. Jackson
    [Show abstract] [Hide abstract]
    ABSTRACT: The validation of soil moisture remote sensing products is generally based upon in situ networks which are often in non-representative locations. Soil moisture sensors have, until recently, been added to existing precipitation networks, which are not installed inside agricultural fields. An initial attempt at a realistic agricultural network has been developed in the Walnut Creek watershed near Ames, Iowa. Small temporary soil moisture stations are installed within the corn and soybean fields which dominate the region. This network design results in a non-continuous but representative watershed average during active growing seasons. Begun in 2006, nine stations have been recording the surface soil moisture (∼5 cm). A stable and reliable network can be achieved with repeated installation procedures which will be useful for monitoring in situ watersheds dominated by agriculture.
    No preview · Article · Jan 2012
  • T.J. Jackson · R. Bindlish · M. Cosh · T. Zhao
    [Show abstract] [Hide abstract]
    ABSTRACT: Validation is important for passive microwave remote sensing of soil moisture from earth orbit. Soil moisture products from the recently launched Soil Moisture Ocean Salinity (SMOS) satellite are evaluated here using data from the first few months following launch. Soil moisture estimates are compared to data from a set of dense in situ soil moisture observing networks distributed across the USA, each of which approximates the size of a SMOS footprint. In situ data from these sites have been calibrated and verified through field campaigns and applied to validating other satellite products. Results show that the SMOS products are reasonable at this stage of validation; however, there are indications that improvements can be made through a careful review of the in situ and alternative satellite product comparisons.
    No preview · Article · Jan 2012
  • Source
    T.J. Jackson · R. Bindlish · M. Cosh · Tianjie Zhao
    [Show abstract] [Hide abstract]
    ABSTRACT: Soil moisture products provided by the Soil Moisture and Ocean Salinity (SMOS) satellite were evaluated using in situ observations. The sites are located in different regions of the U.S. and provide replicate sampling of surface soil moisture at the SMOS footprint scale. Data from a sparse network were also considered. Soil moisture products from the Advanced Microwave Scanning Radiometer were also used for validation. Results based upon a preliminary version of the retrieval algorithm indicate promising performance. It is anticipated that the accuracy and reliability of the retrievals will improve as validation information is evaluated.
    Full-text · Conference Paper · Aug 2011
  • R. Panciera · J. P. Walker · D. Ryu · D. Gray · T. J. Jackson · H. Yardley
    [Show abstract] [Hide abstract]
    ABSTRACT: The availability of global L-band observations from passive (the recently launched SMOS), and active (such as the PALSAR) microwave sensors has boosted the interest in making joint use of the two techniques to improve the retrieval of global near-surface soil moisture at unprecedented resolutions. The Soil Moisture Active Passive (SMAP) mission (scheduled launch, 2014) will fully exploit this synergy by providing concurrent active (radar) and passive (radiometer) microwave observations, resulting in passive-only, active-only and a merged active-passive soil moisture products at spatial resolutions of respectively 40km, 3km and 9km. The Soil Moisture Active Passive Experiments (SMAPEx) are a series of airborne field experiments specifically designed for algorithm development for SMAP and currently ongoing in the context of the SMAP pre-launch cal/val activities for Australia. Four SMAPEx campaigns are scheduled across the 2010-2011 seasonal cycle, with the first campaign (SMAPEx-1) successfully conducted on moderately wet winter conditions (July 5-10, 2010) and the second campaign (SMAPEx-2), scheduled for the summer (December 4-8,2010). SMAPEx is making use of a novel SMAP airborne simulator, including an L-band radar and radiometer to collect SMAP-like data over a well monitored semi-arid agricultural area in the Murrumbidgee catchment in south-eastern Australia. High resolution radar and radiometer observations collected during SMAPEx are supported by extensive ground sampling of soil moisture and ancillary data, allowing for testing of a variety of algorithms over semi-arid agricultural areas, typical of the Australian environment but similar to large areas of the central continental USA, including radiometer-only, radar-only, merged active-passive, downscaling and radar change-detection algorithms. In this paper a preliminary assessment of the performance of the radar-only and radiometer-only retrieval algorithms proposed as baseline for SMAP is presented. The soil moisture retrieved from active and passive microwave airborne observations collected during the SMAPEx-1 campaign is compared with extensive spatial data collected at focus areas. The quality of the individual retrievals is discussed in relation with different land surface conditions, ranging from intensive cropping to dryland grassland areas.
    No preview · Article · Dec 2010
  • Source
    T J Jackson · R Bindlish · M Cosh · T Zhao

    Full-text · Conference Paper · Nov 2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper discusses the results from a series of field experiments using ground-based L-band microwave active/passive sensors. Three independent approaches are applied to the microwave data to determine vegetation opacity of coniferous trees. First, a zero-order radiative transfer model is fitted to multi-angular microwave emissivity data in a least-square sense to provide “effective” vegetation optical depth. Second, a ratio between radar backscatter measurements with a corner reflector under trees and in an open area is calculated to obtain “measured” tree propagation characteristics. Finally, the “theoretical” propagation constant is determined by forward scattering theorem using detailed measurements of size/angle distributions and dielectric constants of the tree constituents (trunk, branches, and needles). The results indicate that “effective” values underestimate attenuation values compared to both “theoretical” and “measured” values.
    Preview · Conference Paper · Aug 2010
  • T. Holmes · T. Jackson
    [Show abstract] [Hide abstract]
    ABSTRACT: In the near future two dedicated soil moisture satellites will be launched (SMOS and SMAP), both carrying an L-band radiometer. It is well known that microwave soil moisture retrieval algorithms must account for the physical temperature of the emitting surface. One proposed approach is the use of temperature output from numerical weather prediction (NWP) models. A radiative transfer model, as implemented in the most commonly used soil moisture retrieval algorithms, will be used to assess sensitivity to errors in the estimated surface temperature. It is shown that soil temperature errors will likely limit the vegetation range within which soil moisture can be retrieved with an accuracy of 0.04 m3m-3. These results should contribute to improved algorithm design and implementation for the new L-band satellite missions.
    No preview · Article · Mar 2010
  • J. Du · T. J. Jackson · R. Bindlish · M. H. Cosh · L. Li · B. K. Hornbuckle
    [Show abstract] [Hide abstract]
    ABSTRACT: Microwave remote sensing can provide reliable measurements of surface soil moisture. However, there are a few land surface features that have a perturbing influence on the soil moisture retrievals. A lack of appropriate observations and physical characterization of target parameters contribute to retrieval problems. Also, some of these effects are relatively small and can be difficult to separate from other factors. Soil Moisture Experiments in 2005 (SMEX05) were designed to examine several aspects of soil moisture retrieval related to the WindSat satellite sensor. Early morning flights were conducted with an airborne microwave radiometer for several weeks from late June to early July 2005 in Iowa, USA over an agricultural domain (corn and soybean). Ground based measurements of soil moisture and related parameters were made concurrent with the aircraft and satellite observations. A focus on the early morning time frame provided an opportunity to study issues (specifically effect of dew on microwave emission) related to soil moisture retrieval during early morning hours, the observing time for WindSat and other future soil moisture satellites (SMOS, SMAP). Soil moisture estimates made using the aircraft X-band channel had a standard error of estimate of 0.053 m3/m3 for soybean and 0.064 m3/m3 for corn fields. Results of an experiment designed to observe the change in brightness temperature at X-band during the evaporation of dew in corn, soybean, and forest indicated that dew had a measurable impact. The presence of dew decreased land surface emissivity for each type of land cover. The impact of dew in corn was most significant and must be considered in soil moisture retrieval at X-band. Increases in temperature (and differences in canopy and soil temperature) during this period made it difficult to attribute all of the change in emissivity to dew dissipation.
    No preview · Article · Dec 2009
  • R. Bindlish · T. J. Jackson · M. H. Cosh · S. H. Yueh · S. Dinardo
    [Show abstract] [Hide abstract]
    ABSTRACT: The Soil Moisture Active Passive Mission (SMAP) is currently addressing issues related to the development and selection of soil moisture retrieval algorithms. A series of aircraft-based flights (SMAP Validation Experiment 2008-SMAPVEX08) was designed to address some of the issues that needed resolution. It was conducted on the Eastern Shore of Maryland and Delaware over a two week period. The objectives of SMAPVEX08 included: (1) development and evaluation of new radio frequency interference (RFI) suppression techniques under consideration for SMAP, (2) providing more robust sets of concurrent passive and active L-band observational data, (3) evaluating the impact of azimuthal orientation on alternative radar retrieval algorithms, and (4) understanding the scaling of high resolution synthetic aperture radar (SAR) to the lower resolution of SMAP. SMAPVEX08 was preceded by an extended precipitation event that resulted in moist conditions. Cloud cover and cooler fall temperatures resulted in a relatively slow but consistent drydown of the surface soil. A series of seven aircraft flights was conducted over two weeks that tracked this drydown. The key instrument in SMAPVEX08 was the Passive Active L-band System (PALS), which simulates SMAP. PALS observations provide a valuable active-passive data set for the development of passive and active L-band soil moisture estimates over heterogeneous land surface conditions. Extensive ground observations were made concurrent with airborne observations. The resulting brightness temperature images are consistent with observed land surface conditions. Over the forested areas L-band brightness temperatures show little variability throughout the duration of the experiment. The standard error of estimate for soil moisture over the Choptank watershed using only the radiometer observations was 0.039 m3/m3. Soil moisture algorithms using PALS radar observations are currently being developed. Soil moisture retrieval results using passive and active PALS observations from the SMAPVEX08 experiment will be presented.
    No preview · Article · Nov 2009
  • T. R. Holmes · T. J. Jackson · R. H. Reichle · J. B. Basara
    [Show abstract] [Hide abstract]
    ABSTRACT: In the near future two dedicated soil moisture satellites will be launched (SMOS and SMAP), both carrying an L-band radiometer. It is well known that microwave soil moisture retrieval algorithms must account for the physical temperature of the emitting surface. Solutions to this include: difference, or ratio indices; forecast model products; thermal infrared satellite observations; and high frequency passive microwave estimates. The availability of multifrequency observations in the same data stream has made the use of high frequency temperature estimates, specifically 37 GHz (Ka-band), an attractive option. SMOS and SMAP will not include a 37 GHz (Ka-band) microwave radiometer. Therefore, alternative algorithms and data sources will be utilized and explored. One proposed approach is the use of temperature output from numerical weather prediction (NWP) models. This temperature estimate will need to closely match the spatial resolution and the overpass time of SMOS and SMAP (between 6 and 7 am/pm local time). To date, very little analysis has been performed to assess the accuracy of the NWP forecasts in terms of land surface temperature. In addition, the relationship between the model products and the requirements of radiative transfer and soil moisture retrieval algorithm temperature requirements needs to be assessed. The goal of this paper is to set up a validation framework that can be applied to NWP outputs. In this investigation, we use in situ data from the Oklahoma Mesonet (at 5 cm) to assess the near surface soil temperature from the Modern Era Retrospective-analysis for Research and Applications (MERRA).
    No preview · Article · Nov 2009
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameters uniformly over 27 1-km validation pixels, retrieve soil moisture from the airborne observations, and then to interpret the differences between airborne and ground estimates in terms of land use, parameter variability, and sensing depth. For pastures (17 pixels) and nonirrigated crops (5 pixels), the root mean square error (rmse) was 0.03 volumetric (vol./vol.) soil moisture with a bias of 0.004 vol./vol. For pixels dominated by irrigated crops (5 pixels), the rmse was 0.10 vol./vol., and the bias was -0.09 vol./vol. The correlation coefficient between bias in irrigated areas and the 1-km field soil moisture variability was found to be 0.73, which suggests either 1) an increase of the soil dielectric roughness (up to about one) associated with small-scale heterogeneity of soil moisture or/and 2) a difference in sensing depth between an L-band radiometer and the in situ measurements, combined with a strong vertical gradient of soil moisture in the top 6 cm of the soil.
    Full-text · Article · Nov 2009 · IEEE Geoscience and Remote Sensing Letters
  • Source
    T. J. Jackson · J. C. Shi · R. Bindlish · M. Cosh · L. Chai · J. Du · S. Zhao · J. Tao
    [Show abstract] [Hide abstract]
    ABSTRACT: A recent study established the theoretical basis for a new type of index based on passive microwave vegetation indices (MVIs). The approach was then calibrated for use with data from the Advanced Microwave Scanning Radiometer (AMSR-E) on the Aqua satellite under the assumption that there is no significant polarization dependence of the vegetation emission and attenuation properties. To demonstrate the potential of the new microwave vegetation indices, these were compared with the Normalized Difference of Vegetation Index (NDVI) derived using MODIS at continental and global scales. These results verified that the microwave vegetation indices can provide new and complementary information on vegetation to NDVI for the global monitoring of vegetation and ecosystem properties from space. The next phase of analysis has focused on quantifiable vegetation parameters, specifically vegetation water content that is a valuable parameter in soil moisture retrievals using microwave data. Data sets collected in several recent large scale field campaigns included vegetation water content over domains in addition to conventional indices. Comparisons to date indicate that the MVI does provide vegetation water content information, however, further analysis of vegetation type effects are needed.
    Full-text · Conference Paper · Aug 2009

Publication Stats

4k Citations
185.14 Total Impact Points

Institutions

  • 2008
    • Universität Bremen
      • Institut für Umweltphysik (IUP)
      Bremen, Bremen, Germany
  • 2007
    • University of Virginia
      • Department of Environmental Sciences
      Charlottesville, Virginia, United States
  • 2001-2003
    • California Institute of Technology
      • Jet Propulsion Laboratory
      Pasadena, CA, United States
    • United States Department of Agriculture
      Washington, Washington, D.C., United States
  • 1999-2003
    • Science Systems and Applications, Inc.
      Maryland, United States
  • 2000
    • Maryland Department Of Agriculture
      Annapolis, Maryland, United States
  • 1992-1998
    • Agricultural Research Service
      ERV, Texas, United States
  • 1995
    • Hawaii Agriculture Research Center
      Honolulu, Hawaii, United States
  • 1994
    • George Washington University
      Washington, Washington, D.C., United States