The MOA Collaboration

Nagoya University, Nagoya, Aichi, Japan

Are you The MOA Collaboration?

Claim your profile

Publications (5)23.97 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection of a Cold Neptune m_planet=21+/-2MEarth orbiting a 0.38MSol M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al. (2015), which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow-up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near-to-mid disk and clearly not in the Galactic bulge.
    No preview · Article · Aug 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing lightcurve near the peak of an Amax ~ 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the lightcurve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge.
    Full-text · Article · Feb 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing events discovered during the 2004-2011 observation seasons. Based on the low mass ratio criterion of q < 0.2, we found seven candidate events: OGLE-2004-BLG-035, OGLE-2004-BLG-039, OGLE-2007-BLG-006, OGLE-2007-BLG-399/MOA-2007-BLG-334, MOA-2011-BLG-104/OGLE-2011-BLG-0172, MOA-2011-BLG-149, and MOA-201-BLG-278/OGLE-2011-BLG-012N. Among them, we are able to confirm that the companions of the lenses of MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149 are brown dwarfs by determining the mass of the lens based on the simultaneous measurement of the Einstein radius and the lens parallax. The measured masses of the brown dwarf companions are 0.02 ± 0.01 M ☉ and 0.019 ± 0.002 M ☉ for MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149, respectively, and both companions are orbiting low-mass M dwarf host stars. More microlensing brown dwarfs are expected to be detected as the number of lensing events with well-covered light curves increases with new-generation searches.
    Full-text · Article · Dec 2012 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the gravitational microlensing discovery of a sub-Saturn mass planet, MOA-2009-BLG-319Lb, orbiting a K or M-dwarf star in the inner Galactic disk or Galactic bulge. The high cadence observations of the MOA-II survey discovered this microlensing event and enabled its identification as a high magnification event approximately 24 hours prior to peak magnification. As a result, the planetary signal at the peak of this light curve was observed by 20 different telescopes, which is the largest number of telescopes to contribute to a planetary discovery to date. The microlensing model for this event indicates a planet-star mass ratio of q = (3.95 +/- 0.02) x 10^{-4} and a separation of d = 0.97537 +/- 0.00007 in units of the Einstein radius. A Bayesian analysis based on the measured Einstein radius crossing time, t_E, and angular Einstein radius, \theta_E, along with a standard Galactic model indicates a host star mass of M_L = 0.38^{+0.34}_{-0.18} M_{Sun} and a planet mass of M_p = 50^{+44}_{-24} M_{Earth}, which is half the mass of Saturn. This analysis also yields a planet-star three-dimensional separation of a = 2.4^{+1.2}_{-0.6} AU and a distance to the planetary system of D_L = 6.1^{+1.1}_{-1.2} kpc. This separation is ~ 2 times the distance of the snow line, a separation similar to most of the other planets discovered by microlensing.
    Full-text · Article · Oct 2010 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection of sub-Saturn-mass planet MOA-2008-BLG-310Lb and argue that it is the strongest candidate yet for a bulge planet. Deviations from the single-lens fit are smoothed out by finite-source effects and therefore are not immediately apparent from the light curve. Nevertheless, we find that a model in which the primary has a planetary companion is favored over the single-lens model by Δχ2 ~ 880 for an additional 3 degrees of freedom. Detailed analysis yields a planet/star mass ratio q = (3.3 ± 0.3) × 10–4 and an angular separation between the planet and star within 10% of the angular Einstein radius. The small angular Einstein radius, θE = 0.155 ± 0.011 mas, constrains the distance to the lens to be DL>6.0 kpc if it is a star (ML>0.08 M ☉). This is the only microlensing exoplanet host discovered so far that must be in the bulge if it is a star. By analyzing VLT NACO adaptive optics images taken near the baseline of the event, we detect additional blended light that is aligned to within 130 mas of the lensed source. This light is plausibly from the lens, but could also be due to a companion to the lens or source, or possibly an unassociated star. If the blended light is indeed due to the lens, we can estimate the mass of the lens, ML = 0.67 ± 0.14 M ☉, planet mass m = 74 ± 17 M ⊕, and projected separation between the planet and host, 1.25 ± 0.10 AU, putting it right on the "snow line." If not, then the planet has lower mass, is closer to its host and is colder. To distinguish among these possibilities on reasonable timescales would require obtaining Hubble Space Telescope images almost immediately, before the source-lens relative motion of causes them to separate substantially.
    Full-text · Article · Aug 2009 · The Astrophysical Journal