Tadeusz Malinski

Ohio University, Афины, Ohio, United States

Are you Tadeusz Malinski?

Claim your profile

Publications (259)

  • Source
    R. Preston Mason · Robert F. Jacob · Hazem Dawoud · [...] · Tadeusz Malinski
    [Show abstract] [Hide abstract] ABSTRACT: Background: Endothelial cell (EC) dysfunction contributes to atherosclerosis and cardiovascular disease. Eicosapentaenoic acid (EPA), an omega-3 fatty acid, and atorvastatin active metabolite (ATM) have been shown to improve EC function. In this study, we tested the separate and combined effects of EPA and ATM on EC function in rat glomerular ECs exposed ex vivo to oxidized LDL (oxLDL) and high glucose levels.
    Full-text available · Article · Apr 2016 · Journal of the American College of Cardiology
  • Source
    R. Preston Mason · Robert F. Jacob · Hazem Dawoud · [...] · Tadeusz Malinski
    [Show abstract] [Hide abstract] ABSTRACT: Background: Amlodipine causes vasodilation through endothelial-dependent nitric oxide (NO) release. In this study, we tested the effects of amlodipine on NO release in human umbilical vein endothelial cells (HUVECs) obtained from Asian, Hispanic, and Caucasian donors, including those with endothelial NO synthase (eNOS) gene variants linked to increased risk of hypertension and cardiovascular (CV) disease.
    Full-text available · Article · Apr 2016 · Journal of the American College of Cardiology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Supplementary Figures 1-23, Supplementary Table 1 and Supplementary Notes 1-3
    File available · Dataset · Feb 2016
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Nitric oxide (NO) is a free radical with a wide range of biological effects, but practically impossible to visualize in single cells. Here we report the development of novel multicoloured fluorescent quenching-based probes by fusing a bacteria-derived -binding domain close to distinct fluorescent protein variants. These genetically encoded probes, referred to as geNOps, provide a selective, specific and real-time read-out of cellular dynamics and, hence, open a new era of bioimaging. The combination of geNOps with a Ca2+ sensor allowed us to visualize and Ca2+ signals simultaneously in single endothelial cells. Moreover, targeting of the probes was used to detect signals within mitochondria. The geNOps are useful new tools to further investigate and understand the complex patterns of signalling on the single (sub)cellular level.
    Full-text available · Article · Feb 2016 · Nature Communications
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: NOC-7-induced fluorescence quenching of O-geNOp expressed in a HeLa cell. The video represents an original measurement of dynamic changes of O-geNOp fluorescence over time upon cell treatment with 10 µM NOC-7. The NO• donor was added and removed via a gravity-based perfusion system as shown in the left panel. Changes in fluorescence intensity of the HeLa cell expressing O-geNOp is shown in pseudo color, grey scale, and as a XY-plot of fluorescence intensity over time
    File available · Dataset · Feb 2016
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The pathogenesis of the abdominal aortic aneurysm (AAA) shows several hallmarks of atherosclerotic and atherothrombotic disease, but comprises an additional, predominant feature of proteolysis resulting in the degradation and destabilization of the aortic wall. This review aims to summarize the current knowledge on AAA development, involving the accumulation of neutrophils in the intraluminal thrombus and their central role in creating an oxidative and proteolytic environment. Particular focus is placed on the controversial role of heme oxygenase 1/carbon monoxide and nitric oxide synthase/peroxynitrite which may exert both protective and damaging effects in the development of the aneurysm. Treatment indications as well as surgical and pharmacological options for AAA therapy are discussed in light of recent reports.
    Full-text available · Article · May 2015
  • Article · Mar 2015 · Journal of the American College of Cardiology
  • R P Mason · J J Corbalan · R F Jacob · [...] · T Malinski
    [Show abstract] [Hide abstract] ABSTRACT: Clinical trials have shown that atorvastatin benefits patients with diabetes even with normal baseline LDL levels. We hypothesized that atorvastatin improves endothelial cell (EC) function and reduces inflammation in hypertensive rats with diabetes. Non-diabetic and streptozotocin-induced type 2 diabetic male spontaneously hypertensive rats (SHR) were treated with atorvastatin at 20 mg/kg/day. After five weeks, nitric oxide (NO) and peroxynitrite (ONOO(-)) were measured in aortic and glomerular endothelial cells. A tandem of nanosensors was used to simultaneously measure NO and ONOO(-) concentration and their ratio [NO]/[ONOO(-)] was monitored with a time resolution better than 10 μs and detection limit 1 nM. [NO]/[ONOO(-)] was applied as a marker of endothelial NO synthase (eNOS) uncoupling, endothelial dysfunction and nitroxidative stress. Glucose, cholesterol, blood pressure (BP), and the cytokine RANTES were also measured. Diabetic SHR rats had elevated glucose (355 ± 38 mg/dL), mean BP (172 ± 15 mmHg), and plasma RANTES (38.4 ± 2.7 ng/mL), low endothelial NO bioavailability and high ONOO(-). Maximal NO release measured 267 ± 29 nM in aortic endothelium of SHR rats and 214 ± 20 nM for diabetic SHR rats; [NO]/[ONOO(-)] was 0.88 ± 12 and 0.61 ± 0.08, respectively. [NO]/[ONOO(-)] ratios below one indicate a high uncoupling of eNOS, endothelial dysfunction and high nitroxidative stress. Atorvastatin treatment partially restored endothelial function by increasing NO level by 98%, reducing ONOO(-) by 40% and favorably elevating [NO]/[ONOO(-)] to 1.1 ± 0.2 for diabetic SHR rats and 1.6 ± 0.3 for SHR rats. The effects of atorvastatin were similar in glomerular endothelial cells and were partially reproduced by modulators of eNOS or NADPH oxidase. Atorvastatin had no significant effect on fasting glucose or total cholesterol levels but reduced mean BP by 21% and 11% in diabetic and non-diabetic animals, respectively. Atorvastatin also reduced RANTES levels by 50%. Atorvastatin favorably increased the [NO]/[ONOO(-)] balance, enhanced endothelial cytoprotective NO, decreased cytotoxic ONOO(-) and reduced BP, inflammation and RANTES levels in diabetic, hypertensive rats without altering cholesterol levels. These findings provide insights into mechanisms of restoration of endothelial function and vascular protection by atorvastatin in diabetes and hypertension.
    Article · Feb 2015 · Journal of physiology and pharmacology: an official journal of the Polish Physiological Society
  • Tadeusz Malinski
    [Show abstract] [Hide abstract] ABSTRACT: The cytotoxic peroxynitrite (ONOO(-)) is an oxidation product of the cytoprotective nitric oxide (NO). Our studies support the hypothesis that the concentration ratio of NO and ONOO(-), [NO]/[ONOO(-)] can be a marker of nitroxidative imbalance, which subsequently correlates well with endothelial dysfunction and dysfunction of the cardiovascular system. Nanosensors, described here, have been used for simultaneous monitoring and measurement of NO and ONOO(-) release from a single endothelial cell. These nanosensors, with a diameter of 200-300 nm, can be positioned accurately in close proximity of 5-10 μm from the endothelial cell membrane. The response time of the sensors is better than a millisecond and the detection limit is 10(-9) M, with a linear concentration response of up to about 2 μM. The application of these sensors for the measurement of the balance and imbalance of [NO]/[ONOO(-)] in normal and dysfunctional endothelium is demonstrated.
    Article · Jan 2015 · Methods in Molecular Biology
  • Source
    Gehan Heeba · J. Jose Corbalan · Stephen Patton · [...] · Tadeusz Malinski
    [Show abstract] [Hide abstract] ABSTRACT: Background: There are conflicting reports concerning the role of nitric oxide (NO) and oxidative stress in brain ischemic damage. In the present study, a nanomedical approach was utilized to elucidate the role of NO and peroxynitrite (ONOO-) imbalance in ischemic stroke. Methods: Nanosensors (diameter ~ 200 nm, detection limit of 10-9 molL-1, response time ~10 μs) were used to monitor in situ the concentration of NO and ONOO- . Adult male Sprague Dawley rats were given permanent middle cerebral artery occlusion (pMCAO) for 3 h, 12 h or 24 h. [NO]/[ONOO-] was measured in striatum, along with, constitutive nitric oxide synthase (cNOS) enzymes and heme oxygenase-1 (HO-1) expression and infarct volume. The [NO]/[ONOO-] was also monitored in pre-treated animals with simvastatin and atorvastatin in the presence of the cNOS inhibitor L-NAME. The effect of modulators of cNOS or NADPH oxidase (sepiapterin, PEG-SOD, VAS2870 and IN-7) on the [NO]/[ONOO-] was elucidated. Results: After 3 h of ischemia, NO decreased from 400 ± 20 nmolL-1 to 217 ± 11 nmolL-1 and ONOO- increased from 150 ± 9 nmolL-1 to 244 ± 9 nmolL-1.The [NO]/[ONOO-] balance shifted from 2.67 ± 0.06 to 0.89 ± 0.07 after 3 h of ischemia, indicating severe uncoupling of cNOS. The [NO]/[ONOO-] imbalance shifted with time of ischemia and correlated directly with the increase in infarct volume and expression of cNOS and HO-1. Treatment with simvastatin or atorvastatin partially, but significantly, restored [NO]/[ONOO-] balance and decreased infarct size in ischemic brain. Also, modulators of cNOS an NADPH oxidase restored [NO]/[ONOO-]. Conclusions: The imbalance between cytoprotective NO and cytotoxic ONOO- directly correlates with brain damage in ischemic stroke. The [NO]/[ONOO-] imbalance reflects on the level of uncoupled cNOS and the nitroxidative stress. [NO]/[ONOO-] imbalance increases cNOS and HO-1, which contributes to or prevents further brain damage, respectively. Balancing [NO]/[ONOO-] is the determinant in preventing or mollifying brain damage. Simvastatin or atorvastatin shifts favorably [NO]/[ONOO-], and may provide prophylactic treatment strategy for ischemic stroke.
    Full-text available · Article · Jul 2014 · Journal of Nanomedicine & Nanotechnology
  • Article · May 2014 · Journal of Clinical Lipidology
  • T. Malinski · S. Hollstrom · A. Jakubowski
    Article · Jan 2014 · Cardiology
  • [Show abstract] [Hide abstract] ABSTRACT: Background: Previously, nitric oxide has been shown to possess antimicrobial effects. In this study, we aim to test the effect of glyceryl trinitrate (GTN) on Staphylococcus aureus growth during simulated extracorporeal circulation (SECC) and also to examine the effect of S. aureus, alone and in combination with GTN, on activation markers of the innate immune system during SECC. Methods: In an in vitro system of SECC, we measured GTN-induced changes in markers of leukocyte activation in whole blood caused by S. aureus infestation, as well as the effect of GTN on S. aureus growth. Results: GTN had no effect on S. aureus growth after 240 minutes SECC. Staphylococcus aureus reduced the expression of granulocyte Fcγ-receptor CD32 but stimulated the expression of monocyte CD32. Staphylococcus aureus stimulated expression of some leukocyte adhesion key proteins, activation marker CD66b, lipopolysaccharide-receptor CD14, and C3b-receptor CD35. Staphylococcus aureus and GTN addition induced significant increases in monocyte CD63 (lysosomal granule protein) levels. Conclusion: GTN does not affect S. aureus growth during SECC and has no effect on SECC-induced leukocyte activation.
    Article · Dec 2013 · The Thoracic and Cardiovascular Surgeon
  • R Preston Mason · Robert F Jacob · J Jose Corbalan · [...] · Tadeusz Malinski
    [Show abstract] [Hide abstract] ABSTRACT: Clinical trials have shown that amlodipine reduces cardiovascular events at a rate that is not predicted by changes in brachial arterial pressure alone. These findings may be explained, in part, by the pleiotropic effects of amlodipine on endothelial cell (EC) function. In this study, we elucidated the effect of amlodipine on nitric oxide (NO) bioavailability and cytotoxic peroxynitrite (ONOO(-)) and blood pressure (BP). Spontaneously hypertensive rats (SHRs) were treated with vehicle or amlodipine (5mg/kg/day) for 8 weeks and compared with untreated, baseline rats. NO and ONOO(-) release from aortic and glomerular ECs were measured ex vivo using amperometric nanosensors following maximal stimulation with calcium ionophore. BP was measured using the tail-cuff method. As compared with baseline, vehicle treatment had reduced aortic endothelial NO release from 157±11nM to 55±6nM and increased ONOO(-) from 69±7nM to 156±19nM. The NO/ONOO(-) ratio, a comprehensive measurement of eNOS function, decreased from 2.3±0.3 to 0.3±0.1. Compared with vehicle, amlodipine treatment restored NO to 101±3nM, decreased ONOO(-) to 50±4nM, and increased the NO/ONOO(-) ratio to 2.0±0.2, a level similar to baseline. Similar changes were observed for glomerular ECs. Mean arterial blood pressure increased from 149±3mm Hg (baseline) to 174±1mm Hg (vehicle). Amlodipine slightly, but significantly, decreased mean arterial blood pressure to 167±3mm Hg vs. vehicle treatment. Amlodipine increased NO bioavailability and decreased nitroxidative stress in SHRs with EC dysfunction disproportionately to BP changes. These direct, vascular effects of amlodipine on EC function may contribute to reduced risk for atherothrombotic events as observed in clinical trials.
    Article · Oct 2013 · American Journal of Hypertension
  • Source
    R Preston Mason · Robert F Jacob · J Jose Corbalan · [...] · Tadeusz Malinski
    [Show abstract] [Hide abstract] ABSTRACT: Nebivolol is a third-generation beta-blocker used to treat hypertension. The vasodilation properties of nebivolol have been attributed to nitric oxide (NO) release. However, the kinetics and mechanism of nebivolol-stimulated bioavailable NO are not fully understood. Using amperometric NO and peroxynitrite (ONOO-) nanosensors, beta3-receptor (agonist: L-755,507; antagonists: SR59230A and L-748,337), ATP efflux (the mechanosensitive ATP channel blocker, gadolinium) and P2Y-receptor (agonists: ATP and 2-MeSATP; antagonist: suramin) modulators, superoxide dismutase and a NADPH oxidase inhibitor (VAS2870), we evaluated the kinetics and balance of NO and ONOO- stimulated by nebivolol in human umbilical vein endothelial cells (HUVECs). NO and ONOO- were measured with nanosensors (diameter ~ 300 nm) placed 5 +/- 2 mum from the cell membrane and ATP levels were determined with a bioluminescent method. The kinetics and balance of nebivolol-stimulated NO and ONOO- were compared with those of ATP, 2-MeSATP, and L-755,507. Nebivolol stimulates endothelial NO release through beta3-receptor and ATP-dependent, P2Y-receptor activation with relatively slow kinetics (75 +/- 5nM/s) as compared to the kinetics of ATP (194 +/- 10nM/s), L-755,507 (108 +/- 6nM/s), and 2-MeSATP (105 +/- 5nM/s). The balance between cytoprotective NO and cytotoxic ONOO- was expressed as the ratio of [NO]/[ONOO-] concentrations. This ratio for nebivolol was 1.80 +/- 0.10 and significantly higher than that for ATP (0.80 +/- 0.08), L-755,507 (1.08 +/- 0.08), and 2-MeSATP (1.09 +/- 0.09). Nebivolol induced ATP release in a concentration-dependent manner. The two major pathways (ATP efflux/P2Y receptors and beta3 receptors) and several steps of nebivolol-induced NO and ONOO- stimulation are mainly responsible for the slow kinetics of NO release and low ONOO-. The net effect of this slow kinetics of NO is reflected by a favorable high ratio of [NO]/[ONOO-] which may explain the beneficial effects of nebivolol in the treatment of endothelial dysfunction, hypertension, heart failure, and angiogenesis.
    Full-text available · Article · Sep 2013 · BMC pharmacology & toxicology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: BACKGROUND: Reactive oxygen species are major determinants of vascular aging. JunD, a member of the activated protein-1 family of transcription factors, is emerging as a major gatekeeper against oxidative stress. However, its contribution to reactive oxygen species homeostasis in the vasculature remains unknown. METHODS AND RESULTS: Endothelium-dependent vasorelaxation was impaired in young and old JunD(-/-) mice (6 and 22 months old) compared with age-matched wild-type mice. JunD(-/-) mice displayed an age-independent decline in endothelial nitric oxide release and endothelial nitric oxide synthase activity and increased mitochondrial superoxide formation and peroxynitrite levels. Furthermore, vascular expression and activity of the free radical scavengers manganese and extracellular superoxide dismutase and aldehyde dehydrogenase 2 were reduced, whereas the NADPH oxidase subunits p47phox, Nox2, and Nox4 were upregulated. These redox changes were associated with premature vascular aging, as shown by reduced telomerase activity, increased β-galactosidase-positive cells, upregulation of the senescence markers p16(INK4a) and p53, and mitochondrial disruption. Interestingly, old wild-type mice showed a reduction in JunD expression and transcriptional activity resulting from promoter hypermethylation and binding with tumor suppressor menin, respectively. In contrast, JunD overexpression blunted age-induced endothelial dysfunction. In human endothelial cells, JunD knockdown exerted a similar impairment of the O2(-)/nitric oxide balance that was prevented by concomitant NADPH inhibition. In parallel, JunD expression was reduced in monocytes from old versus young healthy subjects and correlated with mRNA levels of scavenging and oxidant enzymes. CONCLUSIONS: JunD provides protection in aging-induced endothelial dysfunction and may represent a novel target to prevent reactive oxygen species-driven vascular aging.
    Full-text available · Article · Feb 2013 · Circulation
  • Andrzej Burewicz · Hazem Dawoud · Lu-Lin Jiang · Tadeusz Malinski
    Article · Jan 2013 · American Journal of Analytical Chemistry
  • R Preston Mason · Robert F Jacob · Ruslan Kubant · [...] · Tadeusz Malinski
    [Show abstract] [Hide abstract] ABSTRACT: Most patients with diabetes also have hypertension, a risk factor associated with atherothrombotic disease and characterized by endothelial cell (EC) dysfunction and loss of nitric oxide (NO) bioavailability. Recent studies suggest a possible antihypertensive effect with dipeptidyl peptidase-4 (DPP4) inhibition; however, the underlying mechanism is not understood. In this study, we tested the effects of the DPP4 inhibitor, saxagliptin, on EC function, blood pressure, and sICAM-1 levels in hypertensive rats. Spontaneously hypertensive (SH) rats were treated with vehicle or saxagliptin (10 mg/kg/day) for 8 weeks. NO and peroxynitrite (ONOO) release from aortic and glomerular ECs was stimulated with calcium ionophore and measured using electrochemical nanosensor technology. Changes in EC function were correlated with fasting glucose levels. Saxagliptin treatment was observed to increase aortic and glomerular NO release by 22% (p<0.001) and 23% (p<0.001), respectively, with comparable reductions in ONOO levels; the NO/ONOO ratio increased by >50% in both EC types (p<0.001) as compared to vehicle. Saxagliptin also reduced mean arterial pressure from 170 ± 10 to 158 ± 10 mmHg (p<0.001) and decreased sICAM-1 levels by 37% (p<0.01). The results of this study suggest that DPP4 inhibition reduces blood pressure and inflammation in hypertensive rats while increasing NO bioavailability.
    Article · Aug 2012 · Journal of cardiovascular pharmacology
  • R. Preston Mason · Robert Jacob · J. Jose Corbalan · [...] · Tadeusz Malinski
    Article · Mar 2012 · Journal of the American College of Cardiology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Amorphous silica nanoparticles (SiNP) can be used in medical technologies and other industries leading to human exposure. However, an increased number of studies indicate that this exposure may result in cardiovascular inflammation and damage. A high ratio of nitric oxide to peroxynitrite concentrations ([NO]/[ONOO(-)]) is crucial for cardiovascular homeostasis and platelet hemostasis. Therefore, we studied the influence of SiNP on the platelet [NO]/[ONOO(-)] balance and platelet aggregation. Nanoparticle-platelet interaction was examined using transmission electron microscopy. Electrochemical nanosensors were used to measure the levels of NO and ONOO(-) released by platelets upon nanoparticle stimulation. Platelet aggregation was studied using light aggregometry, flow cytometry, and phase contrast microscopy. Amorphous SiNP induced NO release from platelets followed by a massive stimulation of ONOO(-) leading to an unfavorably low [NO]/[ONOO(-)] ratio. In addition, SiNP induced an upregulation of selectin P expression and glycoprotein IIb/IIIa activation on the platelet surface membrane, and led to platelet aggregation via adenosine diphosphate and matrix metalloproteinase 2-dependent mechanisms. Importantly, all the effects on platelet aggregation were inversely proportional to nanoparticle size. The exposure of platelets to amorphous SiNP induces a critically low [NO]/[ONOO(-)] ratio leading to platelet aggregation. These findings provide new insights into the pharmacological profile of SiNP in platelets.
    Full-text available · Article · Feb 2012 · International Journal of Nanomedicine

Publication Stats

11k Citations


  • 2014
    • Ohio University
      • Department of Chemistry and Biochemistry
      Афины, Ohio, United States
  • 2010
    • Harvard Medical School
      • Department of Medicine
      Boston, Massachusetts, United States
    • University of Idaho
      • Department of Chemistry
      Moscow, Idaho, United States
  • 1985-2009
    • Oakland University
      • Department of Chemistry
      Rochester, MI, United States
  • 2005
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2002
    • University of Vienna
      • Department of Surgery
      Wien, Vienna, Austria
  • 1998
    • University of Innsbruck
      • Institute of Biochemistry
      Innsbruck, Tyrol, Austria
  • 1995
    • University of Pennsylvania
      • Department of Oral Medicine
      Filadelfia, Pennsylvania, United States
  • 1982-1984
    • University of Houston
      • Department of Chemistry
      Houston, Texas, United States
  • 1978-1979
    • Poznan University of Technology
      Posen, Greater Poland Voivodeship, Poland