S. A. Stanford

University of California, Davis, Davis, California, United States

Are you S. A. Stanford?

Claim your profile

Publications (213)769.3 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We study the stellar, brightest cluster galaxy (BCG) and intracluster medium (ICM) masses of 14 South Pole Telescope (SPT) selected galaxy clusters with median redshift z = 0.9 and mass M500 = 6 × 1014 M⊙. We estimate stellar masses for each cluster and BCG using six photometric bands, the ICM mass using X-ray observations and the virial masses using the SPT Sunyaev–Zel'dovich effect signature. At z = 0.9, the BCG mass $M_{\star }^{\mathrm{BCG}}$ constitutes 0.12 ± 0.01 per cent of the halo mass for a 6 × 1014 M⊙ cluster, and this fraction falls as $M_{500}^{-0.58\pm 0.07}$. The cluster stellar mass function has a characteristic mass M0 = 1011.0 ± 0.1 M⊙, and the number of galaxies per unit mass in clusters is larger than in the field by a factor of 1.65 ± 0.20. We combine our SPT sample with previously published samples at low redshift and correct to a common initial mass function and for systematic virial mass differences. We then explore mass and redshift trends in the stellar fraction f⋆, the ICM fraction fICM, the collapsed baryon fraction fc and the baryon fraction fb. At a pivot mass of 6 × 1014 M⊙ and redshift z = 0.9, the characteristic values are f⋆ = 1.1 ± 0.1 per cent, fICM = 9.6 ± 0.5 per cent, fc = 10.7 ± 1.1 per cent and fb = 10.7 ± 0.6 per cent. These fractions all vary with cluster mass at high significance, with higher mass clusters having lower f⋆ and fc and higher fICM and fb. When accounting for a 15 per cent systematic virial mass uncertainty, there is no statistically significant redshift trend at fixed mass. Our results support the scenario where clusters grow through accretion from subclusters (higher f⋆, lower fICM) and the field (lower f⋆, higher fICM), balancing to keep f⋆ and fICM approximately constant since z ∼ 0.9.
    No preview · Article · Jan 2016 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present confirmation of the cluster MOO J1142+1527, a massive galaxy cluster discovered as part of the Massive and Distant Clusters of WISE Survey. The cluster is confirmed to lie at $z=1.19$, and using the Combined Array for Research in Millimeter-wave Astronomy we robustly detect the Sunyaev-Zel'dovich (SZ) decrement at 13.2$\sigma$. The SZ data imply a mass of $\mathrm{M}_{200m}=(1.1\pm0.2)\times10^{15}$ $\mathrm{M}_\odot$, making MOO J1142+1527 the most massive galaxy cluster known at $z>1.15$ and the second most massive cluster known at $z>1$. For a standard $\Lambda$CDM cosmology it is further expected to be one of the $\sim 5$ most massive clusters expected to exist at $z\ge1.19$ over the entire sky. Our ongoing Spitzer program targeting $\sim1750$ additional candidate clusters will identify comparably rich galaxy clusters over the full extragalactic sky.
    Preview · Article · Sep 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a multi-wavelength study of 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star formation rate (SFR) for the BCG in each cluster, based on the UV and IR continuum luminosity, as well as the [O II] emission line luminosity in cases where spectroscopy is available, finding 7 systems with SFR > 100 Msun/yr. We find that the BCG SFR exceeds 10 Msun/yr in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ~1-5% at z ~ 0 from the literature. At z > 1, this fraction increases to 92(+6)(-31)%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific star formation rate in BCGs is declining more slowly with time than for field or cluster galaxies, most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z > 0.6, the correlation between cluster central entropy and BCG star formation - which is well established at z ~ 0 - is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs using data from the Hubble Space Telescope, finding complex, highly asymmetric UV morphologies on scales as large as ~50-60 kpc. The high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy-galaxy interactions to ICM cooling.
    No preview · Article · Aug 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use a sample of 37 of the densest clusters and protoclusters across 1.3 ≤ z ≤ 3.2 from the Clusters Around Radio-Loud AGN (CARLA) survey to study the formation of massive cluster galaxies. We use optical i′-band and infrared 3.6 and 4.5 μm images to statistically select sources within these protoclusters and measure their median observed colours; 〈i′ − [3.6]〉. We find the abundance of massive galaxies within the protoclusters increases with decreasing redshift, suggesting these objects may form an evolutionary sequence, with the lower redshift clusters in the sample having similar properties to the descendants of the high-redshift protoclusters. We find that the protocluster galaxies have an approximately unevolving observed-frame i′ − [3.6] colour across the examined redshift range. We compare the evolution of the 〈i′ − [3.6]〉 colour of massive cluster galaxies with simplistic galaxy formation models. Taking the full cluster population into account, we show that the formation of stars within the majority of massive cluster galaxies occurs over at least 2 Gyr, and peaks at z ∼ 2–3. From the median i′ − [3.6] colours, we cannot determine the star formation histories of individual galaxies, but their star formation must have been rapidly terminated to produce the observed red colours. Finally, we show that massive galaxies at z > 2 must have assembled within 0.5 Gyr of them forming a significant fraction of their stars. This means that few massive galaxies in z > 2 protoclusters could have formed via dry mergers.
    Preview · Article · Jul 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a deep (100 ks) Chandra observation of IDCS J1426.5+3508, a spectroscopically confirmed, infrared-selected galaxy cluster at $z = 1.75$. This cluster is the most massive galaxy cluster currently known at $z > 1.5$, based on existing Sunyaev-Zel'dovich (SZ) and gravitational lensing detections. We confirm this high mass via a variety of X-ray scaling relations, including $T_X$-M, $f_g$-M, $Y_X$-M and $L_X$-M, finding a tight distribution of masses from these different methods, spanning M$_{500}$ = 2.3-3.3 $\times 10^{14}$ M$_{\odot}$, with the low-scatter $Y_X$-based mass $M_{500,Y_X} = 2.6^{+1.5}_{-0.5} \times 10^{14}$ M$_\odot$. IDCS J1426.5+3508 is currently the only cluster at $z > 1.5$ for which X-ray, SZ and gravitational lensing mass estimates exist, and these are in remarkably good agreement. We find a relatively tight distribution of the gas-to-total mass ratio, employing total masses from all of the aforementioned indicators, with values ranging from $f_{gas,500}$ = 0.087-0.12. We do not detect metals in the intracluster medium (ICM) of this system, placing a 2$\sigma$ upper limit of $Z(r < R_{500}) < 0.18 Z_{\odot}$. This upper limit on the metallicity suggests that this system may still be in the process of enriching its ICM. The cluster has a dense, low-entropy core, offset by $\sim$30 kpc from the X-ray centroid, which makes it one of the few "cool core" clusters discovered at $z > 1$, and the first known cool core cluster at $z > 1.2$. The offset of this core from the large-scale centroid suggests that this cluster has had a relatively recent ($\lesssim$500 Myr) merger/interaction with another massive system.
    Preview · Article · Apr 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fraction of cluster galaxies that host luminous active galactic nuclei (AGNs) is an important probe of AGN fueling processes, the cold interstellar medium at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M ≥ 1014 M ☉) at 1 < z < 1.5 selected from the Spitzer/IRAC Shallow Cluster Survey, as well as the field fraction in the immediate vicinity of these clusters, and combine these data with measurements from the literature to quantify the relative evolution of cluster and field AGN from the present to z ~ 3. We estimate that the cluster AGN fraction at 1 < z < 1.5 is f[subscript A] = 3.0[+2.4 over -1.4] % for AGNs with a rest-frame, hard X-ray luminosity greater than L X, H ≥ 10[superscript 44] erg s[superscript –1]. This fraction is measured relative to all cluster galaxies more luminous than M[* over 3.6] (z) +1, where M[* over 3.6] is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6 μm bandpass. The cluster AGN fraction is 30 times greater than the 3σ upper limit on the value for AGNs of similar luminosity at z ~ 0.25, as well as more than an order of magnitude greater than the AGN fraction at z ~ 0.75. AGNs with L X, H ≥ 10[superscript 43] erg s[superscript –1] exhibit similarly pronounced evolution with redshift. In contrast to the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1 < z < 1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z ~ 1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.
    No preview · Article · Feb 2015
  • Source

    Full-text · Article · Feb 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > 103 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples.
    Full-text · Article · Feb 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the stellar, Brightest Cluster Galaxy (BCG) and intracluster medium (ICM) masses of 14 South Pole Telescope (SPT) selected galaxy clusters with median redshift $z=0.9$ and median mass $M_{500}=6\times10^{14}M_{\odot}$. We estimate stellar masses for each cluster and BCG using six photometric bands spanning the range from the ultraviolet to the near-infrared observed with the VLT, HST and Spitzer. The ICM masses are derived from Chandra and XMM-Newton X-ray observations, and the virial masses are derived from the SPT Sunyaev-Zel'dovich Effect signature. At $z=0.9$ the BCG mass $M_{\star}^{\textrm{BCG}}$ constitutes $0.12\pm0.01$% of the halo mass for a $6\times10^{14}M_{\odot}$ cluster, and this fraction falls as $M_{500}^{-0.58\pm0.07}$. The cluster stellar mass function has a characteristic mass $M_{0}=10^{11.0\pm0.1}M_{\odot}$, and the number of galaxies per unit mass in clusters is larger than in the field by a factor $1.65\pm0.2$. Both results are consistent with measurements on group scales and at lower redshift. We combine our SPT sample with previously published samples at low redshift that we correct to a common initial mass function and for systematic differences in virial masses. We then explore mass and redshift trends in the stellar fraction (fstar), the ICM fraction (fICM), the cold baryon fraction (fc) and the baryon fraction (fb). At a pivot mass of $6\times10^{14}M_{\odot}$ and redshift $z=0.9$, the characteristic values are fstar=$1.1\pm0.1$%, fICM=$9.6\pm0.5$%, fc=$10.4\pm1.2$% and fb=$10.7\pm0.6$%. These fractions all vary with cluster mass at high significance, indicating that higher mass clusters have lower fstar and fc and higher fICM and fb. When accounting for a 15% systematic virial mass uncertainty, there is no statistically significant redshift trend at fixed mass in these baryon fractions. (abridged)
    Full-text · Article · Dec 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters using CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects of several potential sources of systematic error and find that they generally act to reduce the best-fit cluster mass. The net magnitude of the systematic shift to lower cluster mass is approximately the size of our statistical error bar, and we do not attempt to correct for it. We apply the maximum likelihood technique to 513 clusters selected via their SZ signatures in SPT data, and rule out the null hypothesis of no lensing at 3.0$\sigma$. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: $M_{200,\rm{lens}} = 0.76^{+0.37}_{-0.36} M_{200,\rm{SZ}}$ (68% C.L., statistical error only).
    Full-text · Article · Dec 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg2 Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z ≤ 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density and a spatial clustering correlation scale length r 0 = (32 ± 7) h –1 Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M min, we derive that at z = 1.5 these clusters reside in halos larger than . We find that the mean mass of our cluster sample is equal to ; thus, our sample contains the progenitors of present-day massive galaxy clusters.
    Preview · Article · Dec 2014 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present an analysis of the clustering of high-redshift galaxies in the recently completed 94 deg2 Spitzer South Pole Telescope Deep-Field survey. Applying flux and colour cuts to the mid-infrared photometry efficiently selects galaxies at z ∼ 1.5 in the stellar mass range 1010–1011 M⊙, making this sample the largest used so far to study such a distant population. We measure the angular correlation function in different flux-limited samples at scales >6 arcsec (corresponding to physical distances >0.05 Mpc) and thereby map the one- and two-halo contributions to the clustering. We fit halo occupation distributions and determine how the central galaxy's stellar mass and satellite occupation depend on the halo mass. We measure a prominent peak in the stellar-to-halo mass ratio at a halo mass of log (Mhalo/M⊙) = 12.44 ± 0.08, 4.5 times higher than the z = 0 value. This supports the idea of an evolving mass threshold above which star formation is quenched. We estimate the large-scale bias in the range bg = 2–4 and the satellite fraction to be fsat ∼ 0.2, showing a clear evolution compared to z = 0. We also find that, above a given stellar mass limit, the fraction of galaxies that are in similar mass pairs is higher at z = 1.5 than at z = 0. In addition, we measure that this fraction mildly increases with the stellar mass limit at z = 1.5, which is the opposite of the behaviour seen at low redshift.
    No preview · Article · Nov 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present CARMA 30 GHz Sunyaev-Zel'dovich (SZ) observations of five high-redshift ($z \gtrsim 1$), infrared-selected galaxy clusters discovered as part of the all-sky Massive and Distant Clusters of WISE Survey (MaDCoWS). The SZ decrements measured toward these clusters demonstrate that the MaDCoWS selection is discovering evolved, massive galaxy clusters with hot intracluster gas. Using the SZ scaling relation calibrated with South Pole Telescope clusters at similar masses and redshifts, we find these MaDCoWS clusters have masses in the range $M_{200} \approx 2-6 \times 10^{14}$ $M_\odot$. Three of these are among the most massive clusters found to date at $z\gtrsim 1$, demonstrating that MaDCoWS is sensitive to the most massive clusters to at least $z = 1.3$. The added depth of the AllWISE data release will allow all-sky infrared cluster detection to $z \approx 1.5$ and beyond.
    Preview · Article · Oct 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg$^2$ of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500-square-degree SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of $\xi$ =4.5 (5.0). Ground- and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the $\xi$>4.5 candidates and 387 (or 95%) of the $\xi$>5 candidates; the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts; we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above $z$~0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is $M_{\scriptsize 500c}(\rho_\mathrm{crit})$ ~ 3.5 x 10$^{14} M_\odot h^{-1}$, the median redshift is $z_{med}$ =0.55, and the highest-redshift systems are at $z$>1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution.
    Full-text · Article · Sep 2014 · The Astrophysical Journal Supplement Series
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a velocity dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion ($\sigma_v$) and 16 X-ray Yx measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. The calibrations using $\sigma_v$ and Yx are consistent at the $0.6\sigma$ level, with the $\sigma_v$ calibration preferring ~16% higher masses. We use the full cluster dataset to measure $\sigma_8(\Omega_ m/0.27)^{0.3}=0.809\pm0.036$. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming the sum of the neutrino masses is $\sum m_\nu=0.06$ eV, we find the datasets to be consistent at the 1.0$\sigma$ level for WMAP9 and 1.5$\sigma$ for Planck+WP. Allowing for larger $\sum m_\nu$ further reconciles the results. When we combine the cluster and Planck+WP datasets with BAO and SNIa, the preferred cluster masses are $1.9\sigma$ higher than the Yx calibration and $0.8\sigma$ higher than the $\sigma_v$ calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness of fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe dataset, we measure $\Omega_ m=0.299\pm0.009$ and $\sigma_8=0.829\pm0.011$. Within a $\nu$CDM model we find $\sum m_\nu = 0.148\pm0.081$ eV. We present a consistency test of the cosmic growth rate. Allowing both the growth index $\gamma$ and the dark energy equation of state parameter $w$ to vary, we find $\gamma=0.73\pm0.28$ and $w=-1.007\pm0.065$, demonstrating that the expansion and the growth histories are consistent with a LCDM model ($\gamma=0.55; \,w=-1$).
    Full-text · Article · Jul 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (Abridged) We present the results of an X-ray analysis of 80 galaxy clusters selected in the 2500 deg^2 South Pole Telescope survey and observed with the Chandra X-ray Observatory. We divide the full sample into subsamples of ~20 clusters based on redshift and central density, performing an X-ray fit to all clusters in a subsample simultaneously, assuming self-similarity of the temperature profile. This approach allows us to constrain the shape of the temperature profile over 0<r<1.5R500, which would be impossible on a per-cluster basis, since the observations of individual clusters have, on average, 2000 X-ray counts. The results presented here represent the first constraints on the evolution of the average temperature profile from z=0 to z=1.2. We find that high-z (0.6<z<1.2) clusters are slightly (~40%) cooler both in the inner (r<0.1R500) and outer (r>R500) regions than their low-z (0.3<z<0.6) counterparts. Combining the average temperature profile with measured gas density profiles from our earlier work, we infer the average pressure and entropy profiles for each subsample. Overall, our observed pressure profiles agree well with earlier lower-redshift measurements, suggesting minimal redshift evolution in the pressure profile outside of the core. We find no measurable redshift evolution in the entropy profile at r<0.7R500. We observe a slight flattening of the entropy profile at r>R500 in our high-z subsample. This flattening is consistent with a temperature bias due to the enhanced (~3x) rate at which group-mass (~2 keV) halos, which would go undetected at our survey depth, are accreting onto the cluster at z~1. This work demonstrates a powerful method for inferring spatially-resolved cluster properties in the case where individual cluster signal-to-noise is low, but the number of observed clusters is high.
    Full-text · Article · Apr 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an analysis of the clustering of high-redshift galaxies in the recently completed 94 deg$^2$ Spitzer-SPT Deep Field survey. Applying flux and color cuts to the mid-infrared photometry efficiently selects galaxies at $z\sim1.5$ in the stellar mass range $10^{10}-10^{11}M_\odot$, making this sample the largest used so far to study such a distant population. We measure the angular correlation function in different flux-limited samples at scales $>6^{\prime \prime}$ (corresponding to physical distances $>0.05$ Mpc) and thereby map the one- and two-halo contributions to the clustering. We fit halo occupation distributions and determine how the central galaxy's stellar mass and satellite occupation depend on the halo mass. We measure a prominent peak in the stellar-to-halo mass ratio at a halo mass of $\log(M_{\rm halo} / M_\odot) = 12.44\pm0.08$, 4.5 times higher than the $z=0$ value. This supports the idea of an evolving mass threshold above which star formation is quenched. We estimate the large-scale bias in the range $b_g=2-4$ and the satellite fraction to be $f_\mathrm{sat}\sim0.2$, showing a clear evolution compared to $z=0$. We also find that, above a given stellar mass limit, the fraction of galaxies that are in similar mass pairs is higher at $z=1.5$ than at $z=0$. In addition, we measure that this fraction mildly increases with the stellar mass limit at $z=1.5$, which is the opposite of the behavior seen at low-redshift.
    Preview · Article · Apr 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present 279 galaxy cluster candidates at $z > 1.3$ selected from the 94 deg$^{2}$ Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates in SSDF adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Bo\"otes field. Our simple algorithm detects all three $1.4 < z \leq 1.75$ X-ray detected clusters in the Bo\"otes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE and XMM-Newton. This rich dataset will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density $n_c = (0.7^{+6.3}_{-0.6}) \times 10^{-7} h^{3} \mathrm{Mpc}^{-3}$ and a spatial clustering correlation scale length $r_0 = (32 \pm 7) h^{-1} \rm{Mpc}$. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, $M_{{\rm min}}$, we derive that at $z=1.5$ these clusters reside in halos larger than $M_{{\rm min}} = 1.5^{+0.9}_{-0.7} \times 10^{14} h^{-1} M_{\odot}$. (abridged)
    Preview · Article · Mar 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present optical and infrared imaging and optical spectroscopy of galaxy clusters which were identified as part of an all-sky search for high-redshift galaxy clusters, the Massive and Distant Clusters of WISE Survey (MaDCoWS). The initial phase of MaDCoWS combined infrared data from the all-sky data release of the Wide-field Infrared Survey Explorer (WISE) with optical data from the Sloan Digital Sky Survey (SDSS) to select probable z ~ 1 clusters of galaxies over an area of 10,000 deg^2. Our spectroscopy confirms 19 new clusters at 0.7 < z < 1.3, half of which are at z > 1, demonstrating the viability of using WISE to identify high-redshift galaxy clusters. The next phase of MaDCoWS will use the greater depth of the AllWISE data release to identify even higher redshift cluster candidates.
    Preview · Article · Mar 2014 · The Astrophysical Journal Supplement Series
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present 4.5 {\mu}m luminosity functions for galaxies identified in 178 candidate galaxy clusters at 1.3 < z < 3.2. The clusters were identified as Spitzer/IRAC color-selected overdensities in the Clusters Around Radio-Loud AGN (CARLA) project, which imaged 421 powerful radio-loud AGN at z > 1.3. The luminosity functions are derived for different redshift and richness bins, and the IRAC imaging reaches depths of m*+2, allowing us to measure the faint end slopes of the luminosity functions. We find that {\alpha} = -1 describes the luminosity function very well in all redshifts bins and does not evolve significantly. This provides evidence that the rate at which the low mass galaxy population grows through star formation, gets quenched and is replenished by in-falling field galaxies does not have a major net effect on the shape of the luminosity function. Our measurements for m* are consistent with passive evolution models and high formation redshifts z_f ~ 3. We find a slight trend towards fainter m* for the richest clusters, implying that the most massive clusters in our sample could contain older stellar populations, yet another example of cosmic downsizing. Modelling shows that a contribution of a star-forming population of up to 40% cannot be ruled out. This value, found from our targeted survey, is significantly lower than the values found for slightly lower redshift, z ~ 1, clusters found in wide-field surveys. The results are consistent with cosmic downsizing, as the clusters studied here were all found in the vicinity of radio-loud AGNs -- which have proven to be preferentially located in massive dark matter halos in the richest environments at high redshift -- they may therefore be older and more evolved systems than the general protocluster population.
    Full-text · Article · Mar 2014 · The Astrophysical Journal

Publication Stats

7k Citations
769.30 Total Impact Points

Institutions

  • 1999-2015
    • University of California, Davis
      • Department of Physics
      Davis, California, United States
  • 2013
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States
    • University of Hertfordshire
      • Centre for Astrophysics Research (CAR)
      Hatfield, England, United Kingdom
  • 2011
    • Paris Diderot University
      Lutetia Parisorum, Île-de-France, France
  • 1995-2011
    • University of California, Berkeley
      • Department of Physics
      Berkeley, CA, United States
  • 2009
    • Leiden University
      • Leiden Observartory
      Leiden, South Holland, Netherlands
  • 2008
    • University of Groningen
      • Kapteyn Astronomical Institute
      Groningen, Groningen, Netherlands
  • 1997-2008
    • Lawrence Livermore National Laboratory
      Livermore, California, United States
  • 2007
    • University of Bristol
      • School of Physics
      Bristol, England, United Kingdom
  • 2002
    • Raman Research Institute
      Bengalūru, Karnataka, India