Shogo Tokuyama

Kobe Gakuin University, Kōbe, Hyōgo, Japan

Are you Shogo Tokuyama?

Claim your profile

Publications (97)172.48 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Central post-stroke pain (CPSP) is one of the complications of cerebral ischemia and neuropathic pain syndrome. At present, there are few studies of pain in regions such as the spinal cord or sciatic nerve in cerebral ischemic animal models. To identify proteomic changes in the spinal cord and sciatic nerve in global cerebral ischemic model mice, in the present study we performed an investigation using proteomic methods. In a comparison between the intensity of protein spots obtained from a sham and that from a bilateral carotid artery occulusion (BCAO) in spinal cord and sciatic nerve, the levels of 10 (spinal cord) and 7 (sciatic nerve) protein spots were altered. The protein levels in the spinal cord were significantly increased in NG,NG-dimethylarginine dimethylaminohydrolase 1 (DDAH1), 6-phosphogluconolactonase isoform 1, and precursor apoprotein A-I and decreased in dihydropyrimidinase-related protein 2 (CRMP-2), enolase 1B, rab guanosine 5′-diphosphate (GDP) dissociation inhibitor beta, septin-2 isoform a, isocitrate dehydrogenase subunit alpha, cytosolic malate dehydrogenase, and adenosine triphosphate synthase. The protein levels in the sciatic nerve were significantly increased in a mimecan precursor, myosin light chain 1/3, and myosin regulatory light chain 2 (MLC2), and decreased in dihydropyrimidinase-related protein 3 (CRMP-4), protein disulfide-isomerase A3, 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1, and B-type creatine kinase. In addition, CRMP-2 and CRMP-4 protein levels were decreased, and DDAH1 and MLC2 protein levels were increased on day 1 after BCAO using Western blotting. These results suggested that changes in these proteins may be involved in the regulation of CPSP.
    Preview · Article · Jan 2016 · Biological & Pharmaceutical Bulletin
  • Kazuo Nakamoto · Shogo Tokuyama

    No preview · Article · Dec 2015 · Folia Pharmacologica Japonica
  • Source
    Kei Miyagi · Shinichi Harada · Shogo Tokuyama
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of blood glucose levels as a therapeutic strategy for cerebral ischemia plays an important role in suppressing neuronal damage. In particular, suppression of post-ischemic glucose intolerance improves cerebral ischemia. We have reported that cerebral ischemia induces glucose intolerance and an increase in plasma insulin levels. However, the mechanism of insulin secretion after cerebral ischemia is unclear. Nerve growth factor (NGF), a member of the neurotrophin family, has high affinity for tropomyosin-related kinase A (TrkA). NGF/TrkA signaling is associated with neuronal survival, differentiation, and function. Recently, NGF/TrkA signaling has been reported to be associated with insulin synthesis and secretion. In the present study, we evaluated the insulin content and expression of NGF/TrkA by immunofluorescence and Western blotting after middle cerebral artery occlusion (MCAO) as a cerebral ischemia model. At 6, 12, and 24 h after MCAO, insulin contents were increased in MCAO mice. The expression of NGF was increased at 6, 12, and 24 h, whereas the expression of TrkA tended to decrease in pancreas after MCAO. These results suggest that NGF/TrkA signaling is an important factor in cerebral ischemia-induced insulin synthesis and secretion in the pancreas.
    Preview · Article · Nov 2015 · Biological & Pharmaceutical Bulletin
  • Yui Yamazaki · Sachi Ogihara · Shinichi Harada · Shogo Tokuyama
    [Show abstract] [Hide abstract]
    ABSTRACT: The regulation of post-ischemic hyperglycemia plays an important role in suppressing neuronal damage in therapeutic strategies for cerebral ischemia. We previously reported that the cerebral sodium-glucose transporter (SGLT) was involved in the post-ischemic hyperglycemia-induced exacerbation of cerebral ischemic neuronal damage. Cortical SGLT-1, one of the cerebral SGLT isoforms, is dramatically increased by focal cerebral ischemia. In this study, we focused on the involvement of cerebral SGLT-1 in the development of cerebral ischemic neuronal damage. It was previously reported that activation of 5'-adenosine monophosphate-activated protein kinase (AMPK) increases SGLT-1 expression. Moreover, ischemic stress-induced activation of AMPK exacerbates cerebral ischemic neuronal damage. Therefore, we directly confirmed the relationship between cerebral SGLT-1 and cerebral AMPK activation using in vitro primary culture of mouse cortical neurons. An in vivo mouse model of focal cerebral ischemia was generated using a middle cerebral artery occlusion (MCAO). The development of infarct volume and behavioral abnormalities on day 3 after MCAO were ameliorated in cerebral SGLT-1 knock down mice. Cortical and striatal SGLT-1 expression levels were significantly increased at 12 h after MCAO. Immunofluorescence revealed that SGLT-1 and the neuronal nuclear antigen (NeuN) were co-localized in the cortex and striatum of MCAO mice. In the in vitro study, primary cortical neurons were cultured for five days before each treatment with reagents. Concomitant treatment with hydrogen peroxide and glucose induced the elevation of SGLT-1 and phosphorylated AMPK/AMPK ratio, and this elevation was suppressed by compound C, an AMPK inhibitor in primary cortical neurons. Moreover, compound C suppressed neuronal cell death induced by concomitant hydrogen peroxide/glucose treatment in primary cortical neurons. Therefore, we concluded that enhanced cerebral SGLT-1 function mediated by post-ischemic hyperglycemia exacerbates the development of cerebral ischemic neuronal damage. One of the mechanisms of cerebral SGLT-1 up-regulation may be involved in the AMPK activation after cerebral ischemia.
    No preview · Article · Oct 2015 · Neuroscience
  • Yui Yamazaki · Shinichi Harada · Shogo Tokuyama
    [Show abstract] [Hide abstract]
    ABSTRACT: Post-ischemic hyperglycemia exacerbates the development of cerebral ischemia. To elucidate this exacerbation mechanism, we focused on sodium-glucose transporter (SGLT) as a mediator that lead hyperglycemia to cerebral ischemia. SGLT transport glucose into the cell, together with sodium ion, using the sodium concentration gradient. We have previously reported that suppression of cerebral SGLT ameliorates cerebral ischemic neuronal damage. However, detail relationship cerebral between SGLT and post-ischemic hyperglycemia remain incompletely defined. Therefore, we examined the involvement of cerebral SGLT on cerebral ischemic neuronal damage with or without hyperglycemic condition. Cell survival rate of primary cultured neurons was assessed by biochemical assay. A mouse model of focal ischemia was generated using a middle cerebral artery occlusion (MCAO). Neuronal damage was assessed with histological and behavioral analyses. Concomitant hydrogen peroxide/glucose treatment exacerbated hydrogen peroxide alone-induced cell death. Although a SGLT family-specific inhibitor, phlorizin had no effect on developed hydrogen peroxide alone-induced cell death, it suppressed cell death induced by concomitant hydrogen peroxide/glucose treatment. α-MG induced a concentration-dependent and significant decrease in neuronal survival. PHZ administered on immediately after reperfusion had no effect, but PHZ given at 6h after reperfusion had an effect. Our in vitro study indicates that SGLT is not involved in neuronal cell death in non-hyperglycemic condition. We have already reported that post-ischemic hyperglycemia begins to develop at 6h after MCAO. Therefore, current our in vivo study show post-ischemic hyperglycemic condition may be necessary for the SGLT-mediated exacerbation of cerebral ischemic neuronal damage. Copyright © 2015. Published by Elsevier Ireland Ltd.
    No preview · Article · Aug 2015 · Neuroscience Letters
  • Kazuo Nakamoto · Fuka Aizawa · Takashi Nishinaka · Shogo Tokuyama
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that the administration of docosahexaenoic acid (DHA) or GW9508, a GPR40/FFA1 (free fatty acid receptor) agonist, facilitates β-endorphin release in the arcuate nucleus of the hypothalamus in mice. However, the mechanisms mediating β-endorphin release induced by GPR40/FFA1 agonists remain unknown. In this study, we focused on the changes in expression of hypothalamic prohormone convertase (PC) 2, which is a calcium-dependent subtilisin-related proteolytic enzyme. The intracerebroventricular injection of DHA or GW9508 significantly increased PC2 protein expression in the hypothalamus. This increase in PC2 expression was inhibited by pretreatment with GW1100, a GPR40/FFA1 antagonist. Furthermore, PC2 protein expression gradually increased over time after complete Freund's adjuvant. These increase in PC2 expression were inhibited by pretreatment with GW1100. However, GW1100 by itself had no effect on PC2 levels. Taken together, our findings suggest that activation of the hypothalamic GPR40/FFA1 signaling pathway may regulate β-endorphin release via PC2, and regulate the endogenous pain control system. Copyright © 2015. Published by Elsevier B.V.
    No preview · Article · Jun 2015 · European journal of pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stachys sieboldii (Labiatae; Chinese artichoke, a tuber), "chorogi" in Japanese, has been extensively used in folk medicine, and has a number of pharmacological properties, including antioxidative activity. However, few studies have examined the neuroprotective effects of S. sieboldii tuber extract (chorogi extract), and it remains unknown whether the extract can alleviate learning and memory dysfunction associated with vascular dementia or Alzheimer's disease. Therefore, in this study, we investigated the neuroprotective effects of chorogi extract, and examined its protection against learning and memory dysfunction using Ginkgo biloba leaf extract (ginkgo extract) as a positive control. Mice were subjected to bilateral carotid artery occlusion (BCAO) for 30 min. Oral administration of chorogi extract or ginkgo extract significantly reduced post-ischemic glucose intolerance on day 1 and neuronal damage including memory impairment on day 3 after BCAO, compared with the vehicle-treated group. Neither herbal medicine affected locomotor activity. Furthermore, neither significantly alleviated scopolamine-induced learning and memory impairment. In primary neurons, neuronal survival rate was significantly reduced by hydrogen peroxide treatment. This hydrogen peroxide-induced neurotoxicity was significantly suppressed by chorogi extract and ginkgo extract. Taken together, our findings suggest that chorogi extract as well as ginkgo extract can protect against learning and memory dysfunction associated with ischemic brain injury through an antioxidative mechanism.
    Preview · Article · Jun 2015 · Journal of Nutritional Science and Vitaminology
  • Shogo Tokuyama · Junichi Kawakami

    No preview · Article · May 2015 · YAKUGAKU ZASSHI
  • Takuro Kobori · Shinichi Harada · Kazuo Nakamoto · Shogo Tokuyama
    [Show abstract] [Hide abstract]
    ABSTRACT: Since there is accumulating evidence to indicate that introduction of early palliative care for cancer patients may im-proved their quality of life or survival rates, the number of patients receiving pain relief by narcotic analgesics in conjunction with chemotherapy is predicted to increase. Therefore to provide eŠective combination treatments it is im-portant to evaluate basic evidence regarding drug-drug interactions between anti-cancer drugs and narcotics. We have focused on P-glycoprotein (P-gp), a drug eŒux transporter, in small intestine where the absorption process of drugs ad-ministered via oral route is greatly limited. Then, we revealed that repeated oral treatment with etoposide (ETP) in-creases P-gp levels in the small intestinal membrane via RhoA/ROCK activation, leading to decrease in analgesia of morphine, a P-gp substrate drug, with alteration of its disposition after oral administration. Furthermore, we found that activation of ezrin/radixin/moesin (ERM), scašold proteins that regulate plasma membrane localization or function of certain plasma membrane proteins such as P-gp, are involved in this mechanism. Of particular interest is that among ERM proteins, radixin may contribute, at least in part, to increased expression of P-gp in the small intestine under repeated oral treatment with ETP.
    No preview · Article · May 2015 · YAKUGAKU ZASSHI
  • [Show abstract] [Hide abstract]
    ABSTRACT: We recently demonstrated that exposure to early life stress exacerbates nerve injury-induced thermal and mechanical hypersensitivity in adult male and female mice. Accumulating evidence suggests that chronic pain causes emotional dysfunction, such as anxiety and depression. In the present study, we investigated the impact of early life stress on depression-like behavior after nerve injury in mice. In addition, we examined the expression of brain-derived neurotrophic factor (BDNF), which is known to be involved in the pathogenesis of depression. Early life stress was induced by maternal separation between 2 and 3 weeks of age combined with social isolation after weaning (MSSI). At 9 weeks of age, the sciatic nerve was partially ligated to elicit neuropathic pain. Depression-like behavior was evaluated using the forced swim test at 12 weeks of age. Tissue samples from different regions of the brain were collected at the end of maternal separation (3 weeks of age) or after the forced swim test (12 weeks of age). At 12 weeks of age, immobility time in the forced swim test was increased only in MSSI-stressed female mice with nerve injury. BDNF expression was increased in male, but not female, MSSI-stressed mice at 3 weeks of age. However, MSSI stress did not impact BDNF expression in male or female mice at 12 weeks of age. Our findings suggest that exposure to early life stress exacerbates emotional dysfunction induced by neuropathic pain in a sex-dependent manner. Changes in BDNF expression after early life stress may be associated with neuropathic pain-induced depression-like behavior in adulthood. Furthermore, sex differences in BDNF expression after exposure to early life stress may contribute to sex-specific susceptibility to neuropathic pain-induced emotional dysfunction. Copyright © 2015. Published by Elsevier Ireland Ltd.
    No preview · Article · Feb 2015 · Neuroscience Letters
  • Takashi Nishinaka · Kazuo Nakamoto · Shogo Tokuyama
    [Show abstract] [Hide abstract]
    ABSTRACT: Early life stress contributes to the pathogenesis of psychiatric disorders and chronic pain in adult patients. However, information about the effect of early life stress on chronic pain in mice is limited. In the present study, we evaluated the effect of early life stress on baseline pain sensitivity and thermal or mechanical hypersensitivity induced by nerve injury in male and female mice. Early life stress was induced by maternal separation and social isolation (MSSI). Mice were separated from dam and littermates for 6 h/day during postnatal days 15-21 and then were housed individually until the end of the study. At 9 weeks of age, the sciatic nerve was partially ligated to elicit neuropathic pain. Thermal and mechanical sensitivity were measured by plantar and von Frey tests. At 7 weeks of age, MSSI induced depression-like behaviors in both male and female mice, but induced anxiety-like behaviors only in female mice. MSSI had no effect on thermal and mechanical sensitivity before nerve injury. However, MSSI enhanced nerve-injury-induced thermal and mechanical hypersensitivity in both male and female mice. MSSI exacerbated neuropathic pain in adult male and female mice. Overall, this model may be useful for understanding the molecular mechanisms underlying the reciprocal relationship between early life stress and chronic pain. Copyright © 2014. Published by Elsevier Inc.
    No preview · Article · Dec 2014 · Life Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background and purpose: The ω-3 polyunsaturated fatty acids exert antinociceptive effects in inflammatory and neuropathic pain; however, the underlying mechanisms remain unclear. Docosahexaenoic acid-induced antinociception may be mediated by the orphan GPR40, now identified as the free fatty acid receptor 1 (FFA1 receptor). Here, we examined the involvement of supraspinal FFA1 receptor signalling in the regulation of inhibitory pain control systems consisting of serotonergic and noradrenergic neurons. Experimental approach: Formalin-induced pain behaviours were measured in mice. Antinociception induced by FFA1 receptor agonists was examined by intrathecal injections of a catecholaminergic toxin, 5-HT lowering drug or these antagonists. The expression of FFA1 receptor protein and c-Fos was estimated by immunohistochemistry, and the levels of noradrenaline and 5-HT in the spinal cord were measured by LC-MS/MS. Key results: FFA1 receptors colocalized with NeuN (a neuron marker) in the medulla oblongata and with tryptophan hydroxylase (TPH; a serotonergic neuron marker) and dopamine β-hydroxylase (DBH; a noradrenergic neuron marker). A single i.c.v. injection of GW9508, a FFA1 receptor agonist, increased the number of c-Fos-positive cells and the number of neurons double-labelled for c-Fos and TPH and/or DBH. It decreased formalin-induced pain behaviour. This effect was inhibited by pretreatment with 6-hydroxydopamine, DL-p-chlorophenylalanine, yohimbine or WAY100635. Furthermore, GW9508 facilitated the release of noradrenaline and 5-HT in the spinal cord. In addition, GW1100, a FFA1 receptor antagonist, significantly increased formalin-induced pain-related behaviour. Conclusion and implications: Activation of the FFA1 receptor signalling pathway may play an important role in the regulation of the descending pain control system.
    No preview · Article · Nov 2014 · British Journal of Pharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Central post-stroke pain (CPSP), one of the complications of cerebral ischemia and neuropathic pain syndrome, is associated with specific somatosensory abnormalities. Although CPSP is a serious problem, detailed underlying mechanisms and standard treatments for CPSP are not well established. In this study, we assessed the role of GPR40, a long-chain fatty acid receptor, showing anti-nociceptive effects, in CPSP. We also examined the role of astrocytes in CPSP due to their effects in mediating the release of polyunsaturated fatty acids, which act as potential GPR40 ligands. The aim of this study was to determine the interactions between CPSP and astrocyte/GPR40 signaling. Male ddY mice were subjected to 30min of bilateral carotid artery occlusion (BCAO). The development of hind paw mechanical hyperalgesia was measured after BCAO using the von Frey test. Neuronal damage was estimated by histological analysis on day 3 after BCAO. The thresholds for hind paw mechanical hyperalgesia were significantly decreased on days 1-28 after BCAO when compared with pre-BCAO assessments. BCAO-induced mechanical hyperalgesia was significantly decreased by intracerebroventricular injection of docosahexaenoic acid or GW9508, a GPR40 agonist; furthermore, these effects were reversed by GW1100, a GPR40 antagonist. The expression levels of glial fibrillary acidic protein, an astrocytic marker, and some free fatty acids were significantly decreased 5h after BCAO, although no effects of BCAO were noted on hypothalamic GPR40 protein expression. Our data show that BCAO-induced mechanical hyperalgesia is possible to be regulated by astrocyte activation and stimulation of GPR40 signaling.
    No preview · Article · Sep 2014 · European Journal of Pharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Altered expression of P-glycoprotein (P-gp), a drug efflux transporter expressed by brain capillary endothelial cells (BCECs), may contribute to the development of opioid analgesic tolerance, as demonstrated by cumulative evidence from research. However, the detailed mechanism by which chronic morphine treatment increases P-gp expression remains unexplained. Ezrin/radixin/moesin (ERM) are scaffold proteins that are known to regulate the plasma membrane localization of some drug transporters such as P-gp in peripheral tissues, although a few reports suggest its role in the central nervous system as well. In this study, we investigated the involvement of ERM in the development of morphine analgesic tolerance through altered P-gp expression in BCECs. Repeated treatment with morphine (10 mg/kg/day, s.c. for 5 days) decreased its analgesic effect in the tail-flick test and increased P-gp protein expression in BCECs, as determined by Western blotting. Furthermore, moesin protein expression increased in the same fraction whereas that of ezrin decreased; no change was observed in the radixin expression. Furthermore, immunoprecipitation and immunofluorescence assays revealed interaction between moesin and P-gp molecules, along with co-localization, in BCECs. In conclusion, an increase in moesin expression may contribute to the increased expression of P-gp in BCECs, leading to the development of morphine analgesic tolerance.
    No preview · Article · Jul 2014 · Drug Metabolism and Pharmacokinetics
  • Takuro Kobori · Shinichi Harada · Kazuo Nakamoto · Shogo Tokuyama
    [Show abstract] [Hide abstract]
    ABSTRACT: In clinical pharmacotherapy, therapeutic benefits and adverse effects of medicines differ substantially between individuals and are often determined by their blood levels. Critical regulators influencing the pharmacokinetics and pharmacodynamics of drugs include drug transporters and drug-metabolizing enzymes. Among these, we have focused on P-glycoprotein (P-gp), a drug efflux transporter. A growing body of evidence indicates that the expression and functional activity of P-gp are altered under several pathological conditions, by exposure to substrate drugs of P-gp, and by ingestion of certain foods. In this critical review, we discuss the mechanisms by which anticancer drugs, most of which are P-gp substrates, alter the expression and functional activity of P-gp in tumors and normal tissues after chronic treatment. Accumulating evidence shows that various transcription factors, in addition to epigenetic and post-translational factors, modulate P-gp expression, which alters the pharmacokinetics and pharmacological effects of drugs. Therefore, it is important to consider individual patients with regard to drug-taking history, as well as levels of P-gp expression and function, when providing clinical pharmacotherapy.
    No preview · Article · Jul 2014 · Journal of Pharmacological Sciences
  • Takuro Kobori · Shinichi Harada · Kazuo Nakamoto · Shogo Tokuyama
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously, we reported that repeated oral administration of etoposide (ETP) increases P-glycoprotein (P-gp) expression in association with activation of ezrin/radixin/moesin (ERM) via Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil containing protein kinase (ROCK) signaling in the small intestine. However, the detailed mechanisms of this pathway have yet to be fully elucidated. Recently, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], one of the most abundant phosphoinositides in the plasma membrane, has attracted attention regarding its involvement in the plasma membrane localization of various membrane proteins. PtdIns(4,5)P2 is an essential factor in the dissociation and subsequent membrane translocation (activation) of ERM, and its synthetic pathway is known to be highly regulated by RhoA/ROCK signaling. Here, we examined the involvement of PtdIns(4,5)P2 in the mechanism by which ETP treatment increases small intestinal P-gp levels, and we determined which protein within ERM contributes to this phenomenon. Repeated oral treatment with ETP (10 mg/kg/d) over 5 d significantly increased PtdIns(4,5)P2 expression in the ileal membrane as measured by dot blot. Furthermore, this increase was suppressed by co-administration of a RhoA inhibitor, rosuvastatin (5 mg/kg/d, per os (p.o.)), or a ROCK inhibitor, fasudil (5 mg/kg/d, p.o.). In immunoprecipitation assays, radixin (but not ezrin or moesin) binding to PtdIns(4,5)P2 was observed to increase in association with the up-regulation of P-gp in the same fraction, and immunofluorescence studies indicated that radixin co-localized with PtdIns(4,5)P2 in the ileal tissue. In conclusion, ETP treatment appears to up-regulate PtdIns(4,5)P2 expression via RhoA/ROCK signaling, leading to the activation of ERM, presumably through the physical interaction of radixin with PtdIns(4,5)P2. This in turn increases the expression of ileal P-gp.
    No preview · Article · Jul 2014 · Biological & Pharmaceutical Bulletin
  • Takuro Kobori · Shinichi Harada · Kazuo Nakamoto · Shogo Tokuyama
    [Show abstract] [Hide abstract]
    ABSTRACT: Currently, the World Health Organization recommends oral administration of opioid analgesics for patients with cancer to treat cancer-related pain from the initial stage of treatment. Furthermore, many anticancer drugs have been newly-developed and approved as oral form. Because of this trend, the chances of drug-drug interactions between anticancer drugs and opioid analgesics during absorption process from the intestine are likely to increase. To investigate these possible drug-drug interactions, we have focused on intestinal P-glycoprotein (P-gp) which regulates the absorption of various substrate drugs administered orally. Previously, we have found that repeated oral treatment with etoposide (ETP), an anticancer drug, attenuates analgesia of oral morphine, a substrate drug for P-gp, by increasing the expression and activity of intestinal P-gp. However, the mechanism by which ETP treatment increases the intestinal P-gp expression and decreases oral morphine analgesia remains unclear. RhoA, a small G-protein, and ROCK, an effector of RhoA, pathway has been attracted attention with regard to their involvement in the regulatory mechanism of the expression and activity of P-gp. Interestingly, this pathway is activated in response to various signaling induced by some anticancer drugs. Furthermore, it has been reported that ezrin/radixin/moesin (ERM) play a key role in the plasma membrane localization of P-gp, and that RhoA/ROCK pathway regulates the activation process of ERM. This review article introduces the result of our previous research as well as recent findings on the involvement of ERM via activation of RhoA/ROCK in the increased expression of intestinal P-gp and decreased oral morphine analgesia induced by repeated oral treatment with ETP.
    No preview · Article · Jun 2014 · Yakugaku zasshi journal of the Pharmaceutical Society of Japan
  • Y. Yamazaki · S. Harada · S. Tokuyama
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral ischemia can be exacerbated by post-ischemic hyperglycemia, which may involve the cerebral sodium-glucose transporter (SGLT). However, the contribution of each SGLT isoform in cerebral ischemia is still unclear. SGLT-1, -3, -4, and -6 have been reported to be expressed in various brain regions. Among these isoforms, only SGLT-3 does not transport glucose, but depolarizes the plasma membrane when glucose is bound, suggesting that SGLT-3 is a glucose sensor. Therefore, in this study, we investigated the involvement of cerebral SGLT-3 in the development of ischemia. The mouse model of focal ischemia was generated by middle cerebral artery occlusion (MCAO). Neuronal damage was assessed by histological and behavioral analyses. Fasting blood glucose levels on day 1 after MCAO were not affected in SGLT-3 siRNA-mediated knockdown of SGLT-3. The development of infarct volume and behavioral abnormalities on day 1 after MCAO were exacerbated in SGLT-3 knockdown mice (control group: n = 7, 94.2 ± 21.8 mm3, 2 (1.6–2.4), SGLT-3 knockdown group: n = 6, 1414.8 ± 492.4 mm3, 6 (5.8–6.3), P < 0.05). Moreover, SGLT-3 expression levels were significantly decreased in the striatum (65.0 ± 8.1%, P < 0.05) on day 1, and in the hippocampus (67.6 ± 7.2%, P < 0.05) and hypothalamus (47.5 ± 5.1%, P < 0.01) on day 3 after MCAO (n = 12–13). These effects were significantly inhibited by donepezil (DPZ) treatment (SGLT-3 knockdown group: n = 6, 1419.0 ± 181.5 mm3, 3.6 (3.4–3.7), SGLT-3 knockdown and 3 mg/kg DPZ-treated group: n = 5, 611.3 ± 205.3 mm3, 1.5 (1.4–1.8), P < 0.05). Immunofluorescence revealed that SGLT-3 and choline acetyltransferase were co-localized in the cortex. Our results indicated that cerebral SGLT-3 suppressed neuronal damage by the activation of cholinergic neurons, which are neuroprotective. In contrast, other cerebral SGLT isoforms may be involved in the development of ischemia.
    No preview · Article · Jun 2014 · Neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: Expressions of vascular endothelial growth factor (VEGF) receptors in astrocytes are increased in damaged brains. To clarify the regulatory mechanisms of VEGF receptors, the effects of endothelin-1 (ET-1) were examined in rat cultured astrocytes. Expressions of VEGF-R1 and -R2 receptor mRNA were at similar levels, while the mRNA expressions of VEGF-R3 and Tie-2, a receptor for angiopoietins, were lower. Placenta growth factor (PLGF), a selective agonist of the VEGF-R1 receptor, induced phosphorylation of focal adhesion kinase (FAK) and extracellular signal regulated kinase 1/2 (ERK1/2). Phosphorylations of FAK and ERK 1/2 were also stimulated by VEGF-E, a selective VEGF-R2 agonist. Increased phosphorylations of FAK and ERK1/2 by VEGF165 were reduced by selective antagonists for VEGF-R1 and -R2. Treatment with ET-1 increased VEGF-R1 mRNA and protein levels. The effects of ET-1 on VEGF-R1 mRNA were mimicked by Ala(1,3,11,15) -ET-1, a selective agonist for ETB receptors, and inhibited by BQ788, an ETB antagonist. ET-1 did not affect the mRNA levels of VEGF-R2, -R3 and Tie-2. Pre-treatment with ET-1 potentiated the effects of PLGF on phosphorylations of FAK and ERK1/2. These findings suggest that ET-1 induces up-regulation of VEGF-R1 receptors in astrocytes, and potentiates VEGF signals in damaged nerve tissues. This article is protected by copyright. All rights reserved.
    No preview · Article · May 2014 · Journal of Neurochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The functional role of brain G protein-coupled receptor 40 (GPR40) remains unclear. We investigated GPR40 signaling in depression-related behavior in mice via the forced swim test. A repeated but not a single intracerebroventricular administration of the GPR40 agonist, GW9508, reduced the duration of immobility behavior. Moreover, the levels of hippocampal nonesterified docosahexaenoic acid and arachidonic acid were decreased immediately after the forced swimming. These results suggested that brain GPR40 signaling may regulate depression-related behavior.
    No preview · Article · Apr 2014 · Journal of Pharmacological Sciences