Sinéad M Lougheed

VU University Medical Center, Amsterdamo, North Holland, Netherlands

Are you Sinéad M Lougheed?

Claim your profile

Publications (33)

  • [Show abstract] [Hide abstract] ABSTRACT: The potency of human papillomavirus type 16 (HPV16)-encoded synthetic long peptides (SLP), conjugated to an optimized Toll-like receptor 2 ligand (TLR2-L), was assessed in ex vivo activation of HPV16+ cancer patient-derived T cells. Two highly immunogenic SLP sequences derived from the oncogenic E6 protein of HPV16 were selected and conjugated to a Pam3CSK4-based TLR2-L under GMP conditions. Both conjugates were able to mature human DCs in vitro and to activate human skin-derived antigen-presenting cells (APCs) upon intradermal injection in an ex vivo skin model, associated with induction of a favorable chemokine profile to attract and activate T cells. The conjugated SLPs were efficiently processed by APCs, since HPV16-specific CD4+ and CD8+ T-cell clones isolated from HPV16+ cervical tumors proliferated in response to both conjugates. The TLR2-L SLP conjugates significantly enhanced ex vivo T helper type 1 T-cell activation in cell suspensions obtained from tumor-draining lymph nodes (LN) resected during hysterectomy of HPV16+ cervical cancer patients. These results show that TLR2-L SLP conjugates can activate circulating or LN-derived tumor-specific T cells, a promising outcome for studying these two conjugates in a phase I/II clinical safety and immunogenicity trial.
    Article · Aug 2016 · Oncotarget
  • Renée C.G. de Bruin · Sinéad M. Lougheed · Liza van der Kruk · [...] · Hans J. van der Vliet
    [Show abstract] [Hide abstract] ABSTRACT: Vγ9Vδ2-T cells constitute the predominant subset of γδ-T cells in human peripheral blood and have been shown to play an important role in antimicrobial and antitumor immune responses. Several efforts have been initiated to exploit these cells for cancer immunotherapy, e.g. by using phosphoantigens, adoptive cell transfer, and by a bispecific monoclonal antibody based approach. Here, we report the generation of a novel set of Vγ9Vδ2-T cell specific VHH (or nanobody). VHH have several advantages compared to conventional antibodies related to their small size, stability, ease of generating multispecific molecules and low immunogenicity. With high specificity and affinity, the anti-Vγ9Vδ2-T cell receptor VHHs are shown to be useful for FACS, MACS and immunocytochemistry. In addition, some VHH were found to specifically activate Vγ9Vδ2-T cells. Besides being of possible immunotherapeutic value, these single domain antibodies will be of great value in the further study of this important immune effector cell subset.
    Article · Jun 2016 · Clinical Immunology
  • Article · Jan 2016 · Cancer Immunology Research
  • Kim M van Pul · Ronald JCLM Vuylsteke · Sinéad M Lougheed · [...] · Tanja D de Gruijl
    Article · May 2015 · Cancer Research
  • Source
    Saskia Jam Santegoets · Anita Gm Stam · Sinéad M Lougheed · [...] · Tanja D de Gruijl
    [Show abstract] [Hide abstract] ABSTRACT: Cancer-related disturbances in myeloid lineage development, marked by high levels of myeloid-derived suppressor cells (MDSC) and impaired dendritic cell (DC) development, are associated with poor clinical outcome due to immune escape and therapy resistance. Redressing this balance may therefore be of clinical benefit. Here we investigated the effects of combined Prostate GVAX/ipilimumab immunotherapy on myeloid subsets in peripheral blood of castration-resistant prostate cancer (CRPC) patients as well as the putative predictive value of baseline and on-treatment myeloid parameters on clinical outcome. Patients with CRPC (n = 28) received thirteen intradermal administrations of Prostate GVAX, consisting of two allogeneic GM-CSF-transduced and irradiated prostate cancer cell lines (LN-CaP and PC3) and six infusions of escalating doses of anti-CTLA4/ipilimumab. Frequencies and activation status of peripheral blood DC (PBDC) and MDSC were determined before, during and after treatment by flowcytometric analysis and related to clinical benefit. Significant treatment-induced activation of conventional and plasmacytoid DC subsets (cDC and pDC) was observed, which in the case of BDCA1/CD1c(+) cDC1 and MDC8(+)/6-sulfoLacNAc(+) inflammatory cDC3 was associated with significantly prolonged overall survival (OS), but also with the development of autoimmune-related adverse events. High pre-treatment levels of CD14(+)HLA-DR(-)monocytic MDSC (mMDSC) were associated with reduced OS. Unsupervised clustering of these myeloid biomarkers revealed particular survival advantage in a group of patients with high treatment-induced PBDC activation and low pretreatment frequencies of suppressive mMDSC in conjunction with our previously identified lymphoid biomarker of high pretreatment CD4(+)CTLA4(+) T cell frequencies. Our data demonstrate that DC and MDSC subsets are affected by prostate GVAX/ipilimumab therapy and that myeloid profiling may contribute to the identification of patients with possible clinical benefit of Prostate GVAX/ipilimumab treatment.
    Full-text Article · Sep 2014
  • Source
    Jelle J Lindenberg · Rieneke van de Ven · Dinja Oosterhoff · [...] · Tanja D de Gruijl
    [Show abstract] [Hide abstract] ABSTRACT: Autologous tumor cell-based vaccines provide a wide range of tumor antigens and personalized neo-epitopes based on individual tumors unique antigenic mutanome signatures. However, tumor-derived factors may hamper in situ maturation of dendritic cells (DC) and thus interfere with the generation of effective anti-tumor immunity. As the skin is a preferred site for tumor vaccine delivery, we investigated the influence of primary colon carcinoma-derived soluble factors on the maturation state of migrating DC in a human skin explant model. Primary tumor-derived supernatants (TDSN) enhanced the phenotypic maturation state of skin-emigrated DC, resulting in an increased T-cell stimulatory ability in an allogeneic mixed leukocyte response. In case of monocyte-derived DC a similar TDSN-induced maturation induction was found to entirely depend on cyclooxygenase (COX)-regulated prostaglandins. In contrast, the increase in skin-emigrated DC maturation was completely prostaglandin-independent, as evidenced by the inability of the COX inhibitor indomethacin to abrogate this TDSN-induced effect. Although TDSN conditioning effected a drop in IL-12p70 release by the skin-emigrated DC and induced a predominant Th17/Th22 transcriptional profile in subsequently stimulated T-cells, Th cell subset differentiation, as assessed by intracellular cytokine expression upon polyclonal priming and re-stimulation, was not affected. Comparative analysis of phenotypic and transcriptional profiles suggests that the observed maturational effects in skin-derived DC may have been induced by tumor-derived GM-CSF. In conclusion, soluble factors derived from whole-cell colon tumor vaccines will not negatively impact DC migration and maturation in human skin, but rather induce DC maturation that will facilitate the priming of a poly-functional Th cell response.
    Full-text Article · Apr 2014 · Human Vaccines & Immunotherapeutics
  • Source
    Full-text Article · Mar 2014
  • Article · Aug 2013 · Cancer Research
  • Article · Aug 2013 · Cancer Research
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: In cancer patients pervasive systemic suppression of Dendritic Cell (DC) differentiation and maturation can hinder vaccination efficacy. In this study we have extensively characterized migratory DC subsets from human skin and studied how their migration and T cell-stimulatory abilities were affected by conditioning of the dermal microenvironment through cancer-related suppressive cytokines. To assess effects in the context of a complex tissue structure, we made use of a near-physiological skin explant model. By 4-color flow cytometry, we identified migrated Langerhans Cells (LC) and five dermis-derived DC populations in differential states of maturation. From a panel of known tumor-associated suppressive cytokines, IL-10 showed a unique ability to induce predominant migration of an immature CD14(+)CD141(+)DC-SIGN(+) DC subset with low levels of co-stimulatory molecules, up-regulated expression of the co-inhibitory molecule PD-L1 and the M2-associated macrophage marker CD163. A similarly immature subset composition was observed for DC migrating from explants taken from skin overlying breast tumors. Whereas predominant migration of mature CD1a(+) subsets was associated with release of IL-12p70, efficient Th cell expansion with a Th1 profile, and expansion of functional MART-1-specific CD8(+) T cells, migration of immature CD14(+) DDC was accompanied by increased release of IL-10, poor expansion of CD4(+) and CD8(+) T cells, and skewing of Th responses to favor coordinated FoxP3 and IL-10 expression and regulatory T cell differentiation and outgrowth. Thus, high levels of IL-10 impact the composition of skin-emigrated DC subsets and appear to favor migration of M2-like immature DC with functional qualities conducive to T cell tolerance.
    Full-text Article · Jul 2013 · PLoS ONE
  • Source
    Jelle J Lindenberg · Rieneke van de Ven · Sinéad M Lougheed · [...] · Tanja D de Gruijl
    [Show abstract] [Hide abstract] ABSTRACT: Interleukin (IL)-10 is a major cancer-related immunosuppressive factor, exhibiting a unique ability to hamper the maturation of dendritic cells (DCs). We have previously reported that IL-10 induces the conversion of activated, migratory CD1a(+) DCs found in the human skin to CD14(+)CD141(+) macrophage-like cells. Here, as a model of tumor-conditioned DC maturation, we functionally assessed CD14(-) and CD14(+) DCs that matured in vitro upon exposure to IL-10. IL-10-induced CD14(+) DCs were phenotypically characterized by a low maturation state as well as by high levels of BDCA3 and DC-SIGN, and as such they closely resembled CD14(+) cells infiltrating melanoma metastases. Compared with DC matured under standard conditions, CD14(+) DCs were found to express high levels of B7-H1 on the cell surface, to secrete low levels of IL-12p70, to preferentially induce TH2 cells, to have a lower allogeneic TH cell and tumor antigen-specific CD8(+) T-cell priming capacity and to induce proliferative T-cell anergy. In contrast to their CD14(+) counterparts, CD14(-) monocyte-derived DCs retained allogeneic TH priming capacity but induced a functionally anergic state as they completely abolished the release of effector cytokines. Transcriptional and cytokine release profiling studies indicated a more profound angiogenic and pro-invasive signature of CD14(+) DCs as compared with DCs matured in standard conditions or CD14(-) DCs matured in the presence of IL-10. Importantly, signal transducer and activator of transcription 3 (STAT3) depletion by RNA interference prevented the development of the IL-10-associated CD14(+) phenotype, allowing for normal DC maturation and providing a potential means of therapeutic intervention.
    Full-text Article · Apr 2013 · OncoImmunology
  • Source
    Dinja Oosterhoff · Moniek Heusinkveld · Sinéad M Lougheed · [...] · Tanja D de Gruijl
    [Show abstract] [Hide abstract] ABSTRACT: TLR agonists are attractive candidate adjuvants for therapeutic cancer vaccines as they can induce a balanced humoral and T cell-mediated immune response. With a dense network of dendritic cells (DCs) and draining lymphatics, the skin provides an ideal portal for vaccine delivery. Beside direct DC activation, TLR agonists may also induce DC activation through triggering the release of inflammatory mediators by accessory cells in the skin microenvironment. Therefore, a human skin explant model was used to explore the in vivo potential of intradermally delivered TLR agonists to stimulate Langerhans cells and dermal DCs in their natural complex tissue environment. The skin-emigrated DCs were phenotyped and analyzed for T cell stimulatory capacity. We report that, of six tested TLR-agonists, the TLR2 and -3 agonists peptidoglycan (PGN) and polyribosinic-polyribocytidylic acid (Poly I:C) were uniquely able to enhance the T cell-priming ability of skin-emigrated DCs, which, in the case of PGN, was accompanied by Th1 polarization. The enhanced priming capacity of Poly I:C-stimulated DCs was associated with a strong upregulation of appropriate costimulatory molecules, including CD70, whereas that of PGN-stimulated DCs was associated with the release of a broad array of proinflammatory cytokines. Transcriptional profiling further supported the notion that the PGN- and Poly I:C-induced effects were mediated through binding to TLR2/nucleotide-binding oligomerization domain 2 and TLR3/MDA5, respectively. These data warrant further exploration of PGN and Poly I:C, alone or in combination, as DC-targeted adjuvants for intradermal cancer vaccines.
    Full-text Article · Mar 2013 · The Journal of Immunology
  • Saskia J A M Santegoets · Anita G M Stam · Sinéad M Lougheed · [...] · Tanja D de Gruijl
    [Show abstract] [Hide abstract] ABSTRACT: Immune checkpoint blockade enhances antitumor responses, but can also lead to severe immune-related adverse events (IRAE). To avoid unnecessary exposure to these potentially hazardous agents, it is important to identify biomarkers that correlate with clinical activity and can be used to select patients that will benefit from immune checkpoint blockade. To understand the consequences of CTLA-4 blockade and identify biomarkers for clinical efficacy and/or survival, an exploratory T cell monitoring study was performed in a phase I/II dose escalation/expansion trial (n = 28) of combined Prostate GVAX/ipilimumab immunotherapy. Phenotypic T cell monitoring in peripheral blood before and after Prostate GVAX/ipilimumab treatment revealed striking differences between patients who benefited from therapy and patients that did not. Treatment-induced rises in absolute lymphocyte counts, CD4(+) T cell differentiation, and CD4(+) and CD8(+) T cell activation were all associated with clinical benefit. Moreover, significantly prolonged overall survival (OS) was observed for patients with high pre-treatment frequencies of CD4(+)CTLA-4(+), CD4(+)PD-1(+), or differentiated (i.e., non-naive) CD8(+) T cells or low pre-treatment frequencies of differentiated CD4(+) or regulatory T cells. Unsupervised clustering of these immune biomarkers revealed cancer-related expression of CTLA-4(+) in CD4(+) T cells to be a dominant predictor for survival after Prostate GVAX/ipilimumab therapy and to thus provide a putative and much-needed biomarker for patient selection prior to therapeutic CTLA4 blockade.
    Article · Aug 2012 · Cancer Immunology and Immunotherapy
  • Source
    Dinja Oosterhoff · Sinead M. Lougheed · Rieneke van de Ven · [...] · Tanja D de Gruijl
    [Show abstract] [Hide abstract] ABSTRACT: Targeting dendritic cells (DC) through the release of suppressive factors is an effective means for tumors to escape immune control. We assessed the involvement of downstream signaling through the JAK2/STAT3 and p38 MAPK pathways in tumor-induced suppression of human DC development. Whereas the JAK2/STAT3 pathway has been pinpointed in mouse studies as a key regulator of myeloid suppression, in human DC this is less well established. We studied the effects of STAT3 inhibition on the suppression of monocyte-derived DC differentiation mediated by a short-list of four predominant suppressive factors and found that pharmacological STAT3 inhibition could only counteract the effects of IL-6. Accordingly, in testing a panel of supernatants derived from 11 cell lines representing various types of solid tumors, STAT3 inhibition only modestly affected the suppressive effects of a minority of supernatants. Importantly, combined interference in the STAT3 and p38 pathways completely prevented inhibition of DC differentiation by all tested supernatants and effected superior DC function, evidenced by increased allogeneic T cell reactivity with elevated IL-12p70/IL-10 ratios and Th1 skewing. Combined STAT3 and p38 inhibition also afforded superior protection against the suppressive effects of primary glioma and melanoma supernatants and induced a shift from CD14(+) cells to CD1a(+) cells in metastatic melanoma single-cell suspensions, indicating a potential for improved DC differentiation in the tumor microenvironment. We conclude that combined interference in the STAT3 and p38 MAPK signaling pathways is a promising approach to overcome tumor-induced inhibitory signaling in DC precursors and will likely support clinical immunotherapeutic strategies.
    Full-text Article · Aug 2012 · OncoImmunology
  • Article · Jun 2012 · Cancer Research
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We have previously shown that homocysteine (Hcy) induces phosphatidylserine (PS) exposure, apoptosis and necrosis in human endothelial cells. Since it has been suggested that S-adenosylhomocysteine (SAH) is the main causative factor in Hcy-induced pathogenesis of cardiovascular disease, we evaluate here whether the cytotoxic Hcy effect in endothelial cells is also SAH dependent. Human umbilical vein endothelial cells (HUVECs) were exposed to the following conditions: (1) non-treated control (resulting in 2.8 nM intracellular SAH and 3.1 μM extracellular l-Hcy); and incubation with (2) 50 μM adenosine-2,3-dialdehyde (ADA; resulting in 17.7 nM intracellular SAH and 3.1 μM extracellular l-Hcy), (3) 2.5 mM Hcy (resulting in 20.9 nM intracellular SAH and 1.8 mM extracellular l-Hcy), and (4) 1, 10 and 100 μM SAH. We then determined the effect of treatment on annexin V-positivity, caspase-3 activity, cytochrome c release (sub)cellular expression of NOX2, NOX4, p47(phox) and nitrotyrosine, and H(2)O(2). Both Hcy and ADA significantly increased PS exposure (n=5), caspase-3 activity (n=6) and cytochrome c release (n=3). Incubation with extracellular SAH alone did not affect cell viability. Both Hcy and ADA also induced similar increases in nuclear NOX2 and (peri)nuclear NOX4, coinciding with (peri)nuclear p47(phox) expression and local reactive oxygen species (ROS) (n=3). Inhibition of NOX-mediated ROS by the flavoenzyme inhibitor diphenylene iodonium (DPI) significantly decreased apoptosis induction (n=3) and ROS production (n=3). SAH induces PS exposure and apoptosis in endothelial cells independently of Hcy. Our study therefore shows that Hcy-mediated endothelial dysfunction, as determined in the cell model used, is mainly due to SAH accumulation.
    Full-text Article · Nov 2011 · Atherosclerosis
  • [Show abstract] [Hide abstract] ABSTRACT: Langerhans cell (LC) infiltration has been observed in glioblastoma, but the glioblastoma microenvironment may be conditioned to resist antitumor immune responses. As little is known about how glioblastoma may affect dendritic cell differentiation, here we set out to delineate the effects of glioblastoma-derived soluble factors on LC differentiation. CD34(+) precursor cells of the human myeloid cell line MUTZ-3 were differentiated into LC in the presence of conditioned media of the human glioblastoma cell lines U251 or U373 and phenotypically and functionally characterized. Glioblastoma-conditioned media inhibited LC differentiation, resulting in functional impairment, as determined by allogeneic mixed leukocyte reactivity, and induction of STAT3 activation. IL-6 blockade completely abrogated these glioblastoma-induced immunosuppressive effects and reduced STAT3 phosphorylation. However, neither addition of JSI-124 (cucurbitacin-I; a JAK2/STAT3 inhibitor), nor of GW5074 (a Raf-1 inhibitor), both of which interfere with signaling pathways reported to act downstream of the IL-6 receptor, prevented the observed inhibitory effects on LC differentiation. Glioblastoma-derived IL-6 is responsible for the observed suppression of LC differentiation from CD34(+) precursors but appears to exert this effect in a STAT3 and Raf-1 independent fashion.
    Article · Sep 2011 · Immunotherapy
  • Source
    Rieneke van de Ven · Mari F C M van den Hout · Jelle J Lindenberg · [...] · Tanja D de Gruijl
    [Show abstract] [Hide abstract] ABSTRACT: To increase (tumor) vaccine efficacy, there is an urgent need for phenotypic and functional characterization of human dendritic cell (DC) subsets residing in lymphoid tissues. In this study we identified and functionally tested 4 human conventional DC (cDC) subsets within skin-draining sentinel lymph nodes (SLNs) from early-stage melanoma patients. These SLNs were all tumor negative and were removed on average 44 days after excision of the primary melanoma. As such, they were considered representative of steady-state conditions. On comparison with skin-migrated cDC, 2 CD1a(+) subsets were identified as most likely skin-derived CD11c(int) Langerhans cells (LC) with intracellular langerin and E-cadherin expression or as CD11c(hi) dermal DCs with variable expression of langerin. Two other CD1a(-) LN-residing cDC subsets were characterized as CD14(-)BDCA3(hi)CD103(-) and CD14(+)BDCA3(lo)CD103(+), respectively. Whereas the CD1a(+) skin-derived subsets displayed greater levels of phenotypic maturation, they were associated with lower levels of inflammatory cytokine release and were inferior in terms of allogeneic T-cell priming and IFNγ induction. Thus, despite their higher maturation state, skin-derived cDCs (and LCs in particular) proved inferior T-cell activators compared with the CD1a(-) cDC subsets residing in melanoma-draining LNs. These observations should be considered in the design of DC-targeting immunotherapies.
    Full-text Article · Jul 2011 · Blood
  • Article · Apr 2011 · Cancer Research
  • Article · Jan 2011 · Cancer Research

Publication Stats

650 Citations

Institutions

  • 2002-2014
    • VU University Medical Center
      • Department of Pathology
      Amsterdamo, North Holland, Netherlands
  • 2007-2011
    • VU University Amsterdam
      • Department of Molecular Cell Biology and Immunology
      Amsterdamo, North Holland, Netherlands