Roger L J Kiang

University of British Columbia - Vancouver, Vancouver, British Columbia, Canada

Are you Roger L J Kiang?

Claim your profile

Publications (2)6.89 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Encapsulation of insulin-producing cells in alginate beads could improve the treatment of type 1 diabetes by reducing or eliminating the need for immunosuppression. We have recently adapted an emulsion and internal gelation process to β-cell encapsulation. This process has the advantages of being well suited for m(3)/h production rates and allowing the use of increased alginate concentrations. Compared with 1.5% alginate beads generated by a standard extrusion process, 5% alginate emulsion-generated beads demonstrated greater in vitro stability and greater volumetric exclusion of antibody-sized pullulan. When βTC3 cells were transplanted into streptozotocin-induced allogeneic diabetic mice, a significant decrease in the blood glucose levels was seen within 2 days with the 5% emulsion-generated beads but not until >16 days with the 1.5% extrusion-generated beads. This was correlated with higher cell survival and lower graft-specific plasma immunoglobulin levels. These results suggest that higher-concentration alginate beads generated by emulsion and internal gelation have improved graft immunoprotection. The emulsion process is a promising and scalable technology for cellular therapies requiring immune isolation.
    No preview · Article · May 2012 · Journal of Biomedical Materials Research Part B Applied Biomaterials
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alginate has been used to protect transplanted pancreatic islets from immune rejection and as a matrix to increase the insulin content of islet progenitor cells. The throughput of alginate bead generation by the standard extrusion and external gelation method is limited by the rate of droplet formation from nozzles. Alginate bead generation by emulsion and internal gelation is a scaleable alternative that has been used with biological molecules and microbial cells, but not mammalian cells. We describe the novel adaptation of this process to mammalian cell immobilization. After optimization, the emulsion process yielded 90 ± 2% mouse insulinoma 6 (MIN6) cell survival, similar to the extrusion process. The MIN6 cells expanded at the same rate in both bead types to form pseudo-islets with increased glucose stimulation index compared to cells in suspension. The emulsion process was suitable for primary pancreatic exocrine cell immobilization, leading to 67 ± 32 fold increased insulin expression after 10 days of immobilized culture. Due to the scaleability and broad availability of stirred mixers, the emulsion process represents an attractive option for laboratories that are not equipped with extrusion-based cell encapsulators, as well as for the production of immobilized or encapsulated cellular therapeutics on a clinical scale.
    No preview · Article · Feb 2011 · Biotechnology and Bioengineering

Publication Stats

40 Citations
6.89 Total Impact Points


  • 2011-2012
    • University of British Columbia - Vancouver
      • • Michael Smith Laboratories
      • • Department of Chemical and Biological Engineering
      Vancouver, British Columbia, Canada