R. Bordoloi

Space Telescope Science Institute, Baltimore, Maryland, United States

Are you R. Bordoloi?

Claim your profile

Publications (34)

  • J. E. G. Peek · Rongmon Bordoloi · Hugues Sana · [...] · Yong Zheng
    [Show abstract] [Hide abstract] ABSTRACT: We present medium-resolution, near-ultraviolet VLT/FLAMES observations of the star USNO-A0600-15865535. We adapt a standard method of stellar typing to our measurement of the shape of the Balmer epsilon absorption line to demonstrates that USNO-A0600-15865535 is a blue horizontal branch star, residing in the lower stellar halo at a distance of 4.4 kpc from the Sun. We measure the H & K lines of singly-ionized calcium and find two isolated velocity components, one originating in the disk, and one associated with high-velocity cloud complex WD. This detection demonstrated that complex WD is closer than ~4.4 kpc and is the first distance constraint on the +100 km/s Galactic complex of clouds. We find that Complex WD is not in corotation with the Galactic disk as has been assumed for decades. We examine a number of scenarios, and find that the most likely is that Complex WD was ejected from the solar neighborhood and is only a few kpc from the Sun.
    Article · Jul 2016
  • Rongmon Bordoloi · Timothy M. Heckman · Colin A. Norman
    [Show abstract] [Hide abstract] ABSTRACT: We present a physically clear cooling flow theory that explains the origin of warm diffuse gas seen primarily as highly ionized absorption line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O VI, O VII, Ne VIII, N V, and Mg X; and present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most of such absorption line systems are consistent with being collisionally ionized, and estimate the maximum likelihood temperature of the gas in each observation. This model satisfactorily explains why O VI is regularly observed around star-forming low-z L* galaxies, and why N V is rarely seen around the same galaxies. We predict that the typical O VI column densities seen around these galaxies would be an order of magnitude higher than the associated N V column densities. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. Useful formulae for both observers and simulators are presented.
    Article · May 2016
  • Rongmon Bordoloi · Jane R. Rigby · Jason Tumlinson · [...] · Eva Wuyts
    [Show abstract] [Hide abstract] ABSTRACT: We probe the spatial distribution of outflowing gas along four lines of sight separated by up to 6 kpc in a gravitationally lensed star-forming galaxy at z = 1.70. Using Mg ii and Fe ii emission and absorption as tracers, we find that the clumps of star formation are driving galactic outflows with velocities of −170 to −250 km s−1. The velocities of Mg ii emission are redshifted with respect to the systemic velocities of the galaxy, consistent with being back-scattered. By contrast, the Fe ii fluorescent emission lines are either slightly blueshifted or at the systemic velocity of the galaxy. Taken together, the velocity structure of the Mg ii and Fe ii emission is consistent with arising through scattering in galactic winds. Assuming a thin shell geometry for the outflowing gas, the estimated masses carried out by these outflows are large (≳30–50 M⊙ yr− 1), with mass loading factors several times the star formation rate. Almost 20 per cent to 50 per cent of the blueshifted absorption probably escapes the gravitational potential of the galaxy. In this galaxy, the outflow is ‘locally sourced’, that is, the properties of the outflow in each line of sight are dominated by the properties of the nearest clump of star formation; the wind is not global to the galaxy. The mass outflow rates and the momentum flux carried out by outflows in individual star-forming knots of this object are comparable to that of starburst galaxies in the local Universe.
    Article · May 2016 · Monthly Notices of the Royal Astronomical Society
  • Joseph N. Burchett · Todd M. Tripp · Rongmon Bordoloi · [...] · Neal Katz
    [Show abstract] [Hide abstract] ABSTRACT: We employ a blindly selected sample of low-redshift C IV absorption systems identified in spectra from the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS), combined with galaxy data from the Sloan Digital Sky Survey (SDSS), to study the metal-enriched circumgalactic medium (CGM) with ~100% completeness for galaxy luminosities L > 0.01 L* at z < 0.015. We find that galaxies are typically found at the C IV absorber redshifts within impact parameters rho < 200 kpc, with the nearest galaxy having L < 0.1 L* for 78% of the absorbers. The ubiquity of faint dwarfs in close proximity to the absorbers suggests that these galaxies affect the enrichment and physical conditions of massive-galaxy halos. However, a fraction of our sample (33%) arise well outside the virial radius of any nearby galaxy brighter than 0.01 L*. The detection rate for C IV absorption within the virial radius is mass dependent and is considerably higher for L >~0.1 L* galaxies (7/8) than for less luminous galaxies (1/10). We also find that the occurrence of C IV absorbers depends strongly on the broader environment: 67% (8/12) of galaxies with rho < 150 kpc in regions of low galaxy density (regions with fewer than ten 0.1 L* galaxies within 1 Mpc) have affiliated C IV absorption while none (0/9) of the galaxies in denser regions show C IV within rho < 150 kpc. The reduced detection rate of C IV in denser environments persists for massive group dark matter halos. In contrast, H I is pervasive in the CGM without regard to mass or environment, although some of these Ly-alpha absorbers could arise in unrelated intergalactic gas.
    Article · Dec 2015
  • [Show abstract] [Hide abstract] ABSTRACT: To investigate the evolution of metal-enriched gas over recent cosmic epochs as well as to characterize the diffuse, ionized, metal-enriched circumgalactic medium (CGM), we have conducted a blind survey for C IV absorption systems in 89 QSO sightlines observed with the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS). We have identified 42 absorbers at z < 0.16, comprising the largest uniform blind sample size to date in this redshift range. Our measurements indicate an increasing C IV absorber number density per comoving path length (dN/dX = 7.5 +/- 1.1) and modestly increasing mass density relative to the critical density of the Universe (Omega(C IV) = 10.0 +/- 1.5 x 10^-8 ) from z ~ 1.5 to the present epoch, consistent with predictions from cosmological hydrodynamical simulations. Furthermore, the data support a functional form for the column density distribution function that deviates from a single power-law, also consistent with independent theoretical predictions. As the data also probe heavy element ions in addition to C IV at the same redshifts, we identify, measure, and search for correlations between column densities of these species where components appear aligned in velocity. Among these ion-ion correlations, we find evidence for tight correlations between C II and Si II, C II and Si III, and C IV and Si IV, suggesting that these pairs of species arise in similar ionization conditions. However, the evidence for correlations decreases as the difference in ionization potential increases. Finally, when controlling for observational bias, we find only marginal evidence for a correlation (86.8% likelihood) between the Doppler line width b(C IV) and column density N(C IV).
    Article · Oct 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract] ABSTRACT: We present a study exploring the nature and properties of the Circum-Galactic Medium (CGM) and its connection to the atomic gas content in the interstellar medium (ISM) of galaxies as traced by the HI 21 cm line. Our sample includes 45 low-z (0.026-0.049) galaxies from the GALEX Arecibo SDSS Survey. Their CGM was probed via absorption in the spectra of background Quasi-Stellar Objects at impact parameters of 63 to 231 kpc. The spectra were obtained with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. We detected neutral hydrogen (Ly{\alpha} absorption-lines) in the CGM of 92% of the galaxies. We find the radial profile of the CGM as traced by the Ly{\alpha} equivalent width can be fit as an exponential with a scale length of about 0.85 times the virial radius of the dark matter halo. We found no correlation between the orientation of the galaxies and their Ly{\alpha} equivalent widths. The velocity spread of the circumgalactic gas is consistent with that seen in the atomic gas in the interstellar medium. We find strong correlations (99.5% confidence) between the gas fraction (M(HI)/M*) and the impact parameter corrected neutral hydrogen content in the CGM. These are stronger than the analogous correlations between the star-formation rates and CGM gas content (97% confidence). These results imply a physical connection between the H I disk and the CGM on scales an order-of-magnitude larger. This is consistent with the picture in which the H I disk is nourished by accretion of gas from the CGM.
    Article · Apr 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract] ABSTRACT: We analyze the low-redshift (z≈0.2) circumgalactic medium by comparing absorption-line data from the COS-Halos Survey to absorption around a matched galaxy sample from two cosmological hydrodynamic simulations. The models include different prescriptions for galactic outflows, namely hybrid energy/momentum driven wind (ezw), and constant winds (cw). We compare equivalent widths, covering factors, ion ratios, and kinematics. Both wind models show generally $\lesssim 1\sigma$ agreement with these observations for H i and certain low ionization metal lines, but poorer agreement with higher ionization metal lines including Si iii and O vi that are well-observed by COS-Halos. This suggests that both models predict too much cool, metal-enriched gas and not enough hot gas, and/or that metals are not sufficiently mixed. This may reflect our model assumption of ejecting outflows as cool and unmixing gas. Our ezw simulation includes a heuristic prescription to quench massive galaxies by super-heating ISM gas. This produces low ionisation absorption broadly consistent with observations, but substantial O vi absorption inconsistent with data, suggesting that gas around quenched galaxies in the real Universe does not cool. At impact parameters of $\lesssim 50$ kpc, recycling winds dominate the absorption of low ions and even H i, while O vi generally arises from metals ejected $\gtrsim$ 1 Gyr ago. The similarity between the wind models is surprising, since they differ substantially in the amount and phase distribution of halo gas. We show that this similarity owes mainly to our comparison at fixed stellar (not halo) mass,suggesting that CGM properties are more closely tied to galaxy's stellar (vs. halo) mass.
    Article · Mar 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    Andrew J. Fox · Rongmon Bordoloi · Blair D. Savage · [...] · Jason Tumlinson
    [Show abstract] [Hide abstract] ABSTRACT: Giant lobes of plasma extend 55 degrees above and below the Galactic Center, glowing in emission from gamma rays (the Fermi Bubbles) to microwaves (the WMAP haze) and polarized radio waves. We use ultraviolet absorption-line spectra from the Hubble Space Telescope to constrain the velocity structure of the outflowing gas within these regions, targeting the quasar PDS 456 (Galactic coordinates l,b=10.4, +11.2 degrees). This sightline passes through a clear biconical structure seen in hard X-ray and gamma-ray emission near the base of the northern Fermi Bubble. We report two high-velocity metal absorption components, at v_LSR=-235 and +250 km/s, which cannot be explained by co-rotating gas in the Galactic disk or halo. Their velocities are suggestive of an origin on the front and back side of an expanding biconical outflow emanating from the Galactic Center. We develop simple kinematic biconical outflow models that can explain these observed profiles with an outflow velocity of ~900 km/s and a full opening angle of ~110 degrees (matching the X-ray bicone). This indicates Galactic Center activity over the last ~2.5-4.0 Myr, in line with age estimates of the Fermi Bubbles. The observations illustrate the use of UV absorption-line spectroscopy to probe the properties of swept-up gas venting into the Fermi Bubbles.
    Full-text Article · Dec 2014
  • Rongmon Bordoloi · Jason Tumlinson · Jessica K. Werk · [...] · Juna A. Kollmeier
    [Show abstract] [Hide abstract] ABSTRACT: We report new observations of circumgalactic gas from the COS-Dwarfs survey, a systematic investigation of the gaseous halos around 43 low-mass z $\leq$ 0.1 galaxies using background QSOs observed with the Cosmic Origins Spectrograph. From the projected 1D and 2D distribution of C IV absorption, we find that C IV absorption is detected out to ~ 0.5 R$_{vir}$ of the host galaxies. The C IV absorption strength falls off radially as a power law and beyond 0.5 R$_{vir}$, no C IV absorption is detected above our sensitivity limit of ~ 50-100 m$\AA$. We find a tentative correlation between detected C IV absorption strength and star formation, paralleling the strong correlation seen in highly ionized oxygen for L~L* galaxies by the COS-Halos survey. The data imply a large carbon reservoir in the CGM of these galaxies, corresponding to a minimum carbon mass of $\gtrsim$ 1.2$\times 10^6$ $M_\odot$ out to ~ 110 kpc. This mass is comparable to the carbon mass in the ISM and more than the carbon mass currently in stars of these galaxies. The C IV absorption seen around these sub-L* galaxies can account for almost two-thirds of all $W_r$> 100 m$\AA$ C IV absorption detected at low z. Comparing the C IV covering fraction with hydrodynamical simulations, we find that an energy-driven wind model is consistent with the observations whereas a wind model of constant velocity fails to reproduce the CGM or the galaxy properties.
    Article · Jun 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We studied the chronology of galactic bulge and disc formation by analysing the relative contributions of these components to the B-band rest-frame luminosity density at different epochs. We present the first estimate of the evolution of the fraction of rest-frame B-band light in galactic bulges and discs since redshift z~0.8. We performed a bulge-to-disc decomposition of HST/ACS images of 3266 galaxies in the zCOSMOS-bright survey with spectroscopic redshifts in the range 0.7 < z < 0.9. We find that the fraction of B-band light in bulges and discs is $(26 \pm 4)%$ and $(74 \pm 4)%$, respectively. When compared with rest-frame B-band measurements of galaxies in the local Universe in the same mass range ($10^{9} M_{\odot}\lessapprox M \lessapprox 10^{11.5} M_{\odot}$), we find that the B-band light in discs decreases by ~30% from z~0.7-0.9 to z~0, while the light from the bulge increases by ~30% over the same period of time. We interpret this evolution as the consequence of star formation and mass assembly processes, as well as morphological transformation, which gradually shift stars formed at half the age of the Universe from star-forming late-type/irregular galaxies toearlier types and ultimately into spheroids.
    Full-text Article · Mar 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We analyze the physical conditions of the cool (T ~ 10^4 K) circumgalactic medium (CGM) using the COS-Halos suite of gas column density measurements taken along 38 quasar sightlines passing within 160 kpc of L ~ L* galaxies at z~0.2. These data are well described by simple photoionization models, with the gas highly ionized (n_HII/n_H > 99%) by the extragalactic ultraviolet background (EUVB). Scaling by estimates for the virial radius, R_vir, we show that the ionization state (tracked by the dimensionless ionization parameter, U) increases with distance from the host galaxy. This correlation has a power-law form of U = (0.006 +/- 0.003)(R/R_vir)^(0.8 +/- 0.3), with significant scatter. The ionization parameters imply a decreasing volume density profile n_ H = 10^(-4.2 +/- 0.25) (R/R_vir)^(-0.8 +/-0.3). Our derived gas volume densities are several orders of magnitude lower than predictions from standard two-phase models with a cool medium in pressure equilibrium with a hot, diffuse medium. Applying the ionization corrections to the HI column densities, we estimate a lower limit to the cool gas mass M_ CGMcool > 6.5 x 10^10 M_sun for the volume within R < R_vir. Allowing for an additional warm, OVI-traced phase, the CGM accounts for *at least* half of the baryons purported to be missing from galaxy dark matter halos.
    Full-text Article · Mar 2014 · The Astrophysical Journal
  • Rongmon Bordoloi · J. Tumlinson · J. Werk · [...] · D. H. Weinberg
    [Show abstract] [Hide abstract] ABSTRACT: I will present the first results mapping the 2-D distribution of circumgalactic gas around nearby dwarf galaxies from the COS-Dwarfs survey. COS-Dwarfs survey uses HST/COS spectroscopy to probe the halos of low redshift galaxies with luminosities L = (0.02 - 0.3)L*, stellar masses (M* ) = 10(8-10) Msun, up to impact parameters of 150 kpc. Using sensitive UV absorption-line measurements of the multiphase gas diagnostics such as Lyα, CII/IV, Si II/III/IV I will present the radial and azimuthal distribution of such gas around these galaxies. I will also show how the absorption strengths vary with host galaxy color, mass, star formation rate, orientation, and how they compare with that of the L* galaxies probed by our related COS-Halos survey. In particular, I will present the dependence of CIV absorption on specific star formation rate (sSFR) and a total mass estimate for carbon around these dwarf galaxies.
    Article · Jan 2014
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We study the high-ion content and kinematics of the circumgalactic medium around low-redshift galaxies using a sample of 23 Lyman limit systems (LLSs) at 0.08 < z < 0.93 observed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. In Lehner et al., we recently showed that low-z LLSs have a bimodal metallicity distribution. Here we extend that analysis to search for differences between the high-ion and kinematic properties of the metal-poor and metal-rich branches. We find that metal-rich LLSs tend to show higher O VI columns and broader O VI profiles than metal-poor LLSs. The total H I line width (Δv 90 statistic) in LLSs is not correlated with metallicity, indicating that the H I kinematics alone cannot be used to distinguish inflow from outflow and gas recycling. Among the 17 LLSs with O VI detections, all but two show evidence of kinematic sub-structure, in the form of O VI-H I centroid offsets, multiple components, or both. Using various scenarios for how the metallicities in the high-ion and low-ion phases of each LLS compare, we constrain the ionized hydrogen column in the O VI phase to lie in the range log N(H II) ~ 17.6-20. The O VI phase of LLSs is a substantial baryon reservoir, with M(high-ion) ~ 108.5-10.9 (r/150 kpc)2M ☉, similar to the mass in the low-ion phase. Accounting for the O VI phase approximately doubles the contribution of low-z LLSs to the cosmic baryon budget.
    Full-text Article · Oct 2013 · The Astrophysical Journal
  • Source
    Full-text Article · Aug 2013 · Astronomy and Astrophysics
  • Source
    R. Bordoloi · S. J. Lilly · E. Hardmeier · [...] · L. Pozzetti
    [Show abstract] [Hide abstract] ABSTRACT: We present an analysis of cool outflowing gas around galaxies, traced by MgII absorption lines in the co-added spectra of a sample of 486 zCOSMOS galaxies at 1 < z < 1.5. These galaxies span a range of stellar masses (9.45< log[M*/Msun]<10.7) and star formation rates (0.14 < log [SFR/Msun/yr] < 2.35). We identify the cool outflowing component in the MgII absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong effect with star formation surface density ({\Sigma}SFR) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from -200 km/s to -300 km/s and on average the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit minimum mass outflow rates > 5-7 Msun/yr and a mass loading factor ({\eta} = dMout/dt /SFR) comparable to the star formation rates of the galaxies.
    Full-text Article · Jul 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: A sample of 94 narrow line AGN with 0.65<z<1.20 has been selected from the 20k-Bright zCOSMOS galaxy sample by detection of the high-ionization [NeV]3426 line. Taking advantage of the large amount of data available in the COSMOS field, the properties of the [NeV]-selected Type-2 AGN have been investigated, focusing on their host galaxies, X-ray emission, and optical line flux ratios. Finally, the diagnostic developed by Gilli et al. (2010), based on the X-ray to [NeV] luminosity ratio, has been exploited to search for the more heavily obscured AGN. We found that [Ne v]-selected narrow line AGN have Seyfert 2-like optical spectra, although with emission line ratios diluted by a star-forming component. The ACS morphologies and stellar component in the optical spectra indicate a preference for our Type-2 AGN to be hosted in early-spirals with stellar masses greater than 10^(9.5-10)Msun, on average higher than those of the galaxy parent sample. The fraction of galaxies hosting [NeV]-selected obscured AGN increases with the stellar mass, reaching a maximum of about 3% at 2x10^11 Msun. A comparison with other selection techniques at z~1 shows that the detection of the [Ne v] line is an effective method to select AGN in the optical band, in particular the most heavily obscured ones, but can not provide by itself a complete census of AGN2. Finally, the high fraction of [NeV]-selected Type-2 AGN not detected in medium-deep Chandra observations (67%) is suggestive of the inclusion of Compton-thick sources in our sample. The presence of a population of heavily obscured AGN is corroborated by the X-ray to [NeV] ratio; we estimated, by mean of X-ray stacking technique and simulations, that the Compton-thick fraction in our sample of Type-2 AGN is 43+-4%, in good agreement with standard assumptions by the XRB synthesis models.
    Full-text Article · May 2013
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We present the analysis of photometric, spectroscopic, and morphological properties for differently selected samples of passive galaxies up to z=1 extracted from the zCOSMOS-20k spectroscopic survey. This analysis intends to explore the dependence of galaxy properties on the selection criterion adopted, study the degree of contamination due to star-forming outliers, and provide a comparison between different commonly used selection criteria. We extracted from the zCOSMOS-20k catalog six different samples of passive galaxies, based on morphology, optical colors, specific star-formation rate, a best fit to the observed spectral energy distribution, and a criterion that combines morphological, spectroscopic, and photometric information. The morphological sample has the higher percentage of contamination in colors, specific star formation rate and presence of emission lines, while the red & passive ETGs sample is the purest, with properties mostly compatible with no star formation activity; however, it is also the less economic criterion in terms of information used. The best performing among the other criteria are the red SED and the quiescent ones, providing a percentage of contamination only slightly higher than the red & passive ETGs criterion (on average of a factor of ~2) but with absolute values of the properties of contaminants still compatible with a red, passively evolving population. We also provided two revised definitions of early type galaxies based on restframe color-color and color-mass criteria, that better reproduce the observed bimodalities. The analysis of the number densities shows evidences of mass-assembly downsizing, with galaxies at 10.25<log(M/Msun)<10.75 increasing their number by a factor ~2-4 from z=0.6 to z=0.2, by a factor ~2-3 from z=1 to z=0.2 at 10.75<log(M/Msun)<11, and by only ~10-50% from z=1 to z=0.2 at 11<log(M/Msun)<11.5.
    Full-text Article · May 2013 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We investigate the link between AGN activity, star-formation and stellar mass of the host galaxy at 0<z<1, looking for spectroscopic traces of AGN and aging of the host. This work provides an extension of the existing studies at z<0.1 and contributes to shed light on galaxy evolution at intermediate redshifts. We used the zCOSMOS 20k data to create a sample of galaxies at z<1. We divided the sample in several mass-redshift bins to obtain stacked galaxy spectra with an improved S/N. We exploited emission-line diagnostic diagrams to separate AGN from star-forming galaxies. We found indication of a role for the total galaxy stellar mass in leading galaxy classification. Stacked spectra show AGN signatures above the log M_*/M_sun>10.2 threshold. Moreover, the stellar populations of AGN hosts are found to be older with respect to star-forming and composites galaxies. This could be due to the the tendency of AGN to reside in massive hosts. The dependence of the AGN classification on the stellar mass is in agreement with what has been already found in previous studies. It is consistent with, together with the evidence of older stellar populations inhabiting the AGN-like galaxies, the downsizing scenario. In particular, our evidence points to an evolutionary scenario where the AGN-feedback is capable of quenching the star formation in the most massive galaxies. Therefore, the AGN-feedback is the best candidate for initiating the passive evolutionary phase of galaxies.
    Full-text Article · Feb 2013 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We examine the red fraction of central and satellite galaxies in the large zCOSMOS group catalog out to z ~ 0.8 correcting for both the incompleteness in stellar mass and for the less than perfect purities of the central and satellite samples. We show that, at all masses and at all redshifts, the fraction of satellite galaxies that have been quenched, i.e., are red, is systematically higher than that of centrals, as seen locally in the Sloan Digital Sky Survey (SDSS). The satellite quenching efficiency, which is the probability that a satellite is quenched because it is a satellite rather than a central, is, as locally, independent of stellar mass. Furthermore, the average value is about 0.5, which is also very similar to that seen in the SDSS. We also construct the mass functions of blue and red centrals and satellites and show that these broadly follow the predictions of the Peng et al. analysis of the SDSS groups. Together, these results indicate that the effect of the group environment in quenching satellite galaxies was very similar when the universe was about a half its present age, as it is today.
    Full-text Article · Nov 2012 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We present joint constraints on the distribution of MgII absorption around galaxies, by combining the MgII absorption seen in stacked background galaxy spectra and the distribution of host galaxies of strong MgII systems from the spectra of background quasars. We present a suite of models that predict, the dependence of MgII absorption on a galaxy's apparent inclination, impact parameter(b) and azimuthal angle. The variations in the absorption strength with azimuthal angles provide much stronger constraints on the intrinsic geometry of the MgII absorption than the dependence on the galaxy's inclination. Strong MgII absorbers (W_r(2796)>0.3) are asymmetrically distributed in azimuth around their host galaxies:72% of the absorbers studied and 100% of the close-in absorbers within b<38 kpc, are located within 50deg of the host galaxy's projected minor axis. Composite models consisting either of a simple bipolar component plus a spherical or disk component, or a single highly softened bipolar distribution, can well represent the azimuthal dependencies observed in both the datasets. Simultaneously fitting both datasets to the composite model, bipolar cone is confined to 50deg of the minor axis and contains 2/3 of the total MgII absorption. The single softened cone model has an exponential fall off with azimuth with an exponential scale-length in opening angle of 45deg. We conclude that the distribution of MgII gas at low impact parameters is not the same as that found at high impact parameters. MgII absorption within 40 kpc primarily arises from cool MgII gas entrained in winds. Beyond 40 kpc, there is evidence for a more symmetric distribution, significantly different from that closer into the galaxies. Here a significant component appears aligned more with the disk and is possibly inflowing, perhaps as part of a galactic fountain or the inflow of material from further out in the system.
    Full-text Article · Nov 2012 · The Astrophysical Journal

Publication Stats

703 Citations

Institutions

  • 2015
    • Space Telescope Science Institute
      Baltimore, Maryland, United States
  • 2010-2014
    • ETH Zurich
      • Institute for Astronomy
      Zürich, Zurich, Switzerland
  • 2012
    • The Astronomical Observatory of Brera
      Merate, Lombardy, Italy
    • French National Centre for Scientific Research
      • Institut de recherche en astrophysique et planétologie (IRAP)
      Lutetia Parisorum, Île-de-France, France
    • Instituto De Astrofisica De Andalucia
      Granata, Andalusia, Spain