Pierre Lescuyer

Hôpitaux Universitaires de Genève, Genève, Geneva, Switzerland

Are you Pierre Lescuyer?

Claim your profile

Publications (61)235.96 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Collection of human whole blood for genomic DNA extraction is part of numerous clinical studies. Since DNA extraction cannot always be performed at the time of sample collection, whole blood samples may be stored for years before being processed. The use of appropriate storage conditions is then critical to obtain DNA in sufficient quantity and of adequate quality in order to obtain reliable results from the subsequent molecular biological analyses. In this study, EDTA whole blood samples were collected from 8 healthy volunteers, and different durations (up to 1 year) and temperatures (room temperature, 4°C, −20°C, and −80°C) of storage were compared. The effect of the addition of a DNA preservative agent was also assessed before and after storage. DNA concentrations measured by UV spectrophotometry and spectrofluorometry were used to calculate DNA extraction yields and double-strand DNA ratios. DNA integrity was controlled by agarose gel electrophoresis and long-range polymerase chain reaction. The impact of storage conditions on DNA methylation was also evaluated. Results showed that certain storage conditions have a significant impact on the DNA extraction yield but little or no effect on DNA integrity and methylation. Storage of EDTA blood at −80°C guarantees high-quality DNA with a good yield. Higher DNA extraction yields were obtained with the addition of a DNA preservative agent before thawing EDTA blood stored at −20°C or −80°C. Long-term storage at room temperature in the presence of a DNA preservative agent also appeared to be a reliable procedure.
    No preview · Article · Jan 2016 · Biopreservation and Biobanking
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: . We elaborated a model that predicts the centiles of the 25(OH)D distribution taking into account seasonal variation. Methods . Data from two Swiss population-based studies were used to generate (CoLaus) and validate (Bus Santé) the model. Serum 25(OH)D was measured by ultra high pressure LC-MS/MS and immunoassay. Linear regression models on square-root transformed 25(OH)D values were used to predict centiles of the 25(OH)D distribution. Distribution functions of the observations from the replication set predicted with the model were inspected to assess replication. Results . Overall, 4,912 and 2,537 Caucasians were included in original and replication sets, respectively. Mean (SD) 25(OH)D, age, BMI, and % of men were 47.5 (22.1) nmol/L, 49.8 (8.5) years, 25.6 (4.1) kg/m 2 , and 49.3% in the original study. The best model included gender, BMI, and sin-cos functions of measurement day. Sex- and BMI-specific 25(OH)D centile curves as a function of measurement date were generated. The model estimates any centile of the 25(OH)D distribution for given values of sex, BMI, and date and the quantile corresponding to a 25(OH)D measurement. Conclusions . We generated and validated centile curves of 25(OH)D in the general adult Caucasian population. These curves can help rank vitamin D centile independently of when 25(OH)D is measured.
    Full-text · Article · Sep 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to accurately quantify proteins in formalin-fixed paraffin-embedded tissues using targeted mass spectrometry opens exciting perspectives for biomarker discovery. We have developed and evaluated a selected reaction monitoring assay for the human receptor tyrosine-protein kinase erbB-2 (HER2) in formalin-fixed paraffin-embedded breast tumors. Peptide candidates were identified using an untargeted mass spectrometry approach in relevant cell lines. A multiplexed assay was developed for the six best candidate peptides and evaluated for linearity, precision and lower limit of quantification. Results showed a linear response over a calibration range of 0.012 to 100 fmol on column (R2: 0.99-1.00).The lower limit of quantification was 0.155 fmol on column for all peptides evaluated. The six HER2 peptides were quantified by selected reaction monitoring in a cohort of 40 archival formalin-fixed paraffin-embedded tumor tissues from women with invasive breast carcinomas, which showed different levels of HER2 gene amplification as assessed by standard methods used in clinical pathology. The amounts of the six HER2 peptides were highly and significantly correlated with each other, indicating that peptide levels can be used as surrogates of protein amounts in formalin-fixed paraffin-embedded tissues. After normalization for sample size, selected reaction monitoring peptide measurements were able to correctly predict 90% of cases based on HER2 amplification as defined by the American Society of Clinical Oncology and College of American Pathologists. In conclusion, the developed assay showed good analytical performances and a high agreement with immunohistochemistry and fluorescence in situ hybridization data. This study demonstrated that selected reaction monitoring allows to accurately quantify protein expression in formalin-fixed paraffin-embedded tissues and represents therefore a powerful approach for biomarker discovery studies. The untargeted mass spectrometry data is available via ProteomeXchange whereas the quantification data by selected reaction monitoring is available on the Panorama Public website. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    No preview · Article · Jul 2015 · Molecular & Cellular Proteomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemoglobin disorder diagnosis is a complex procedure combining several analytical steps. Due to the lack of specificity of the currently used protein analysis methods, the identification of uncommon hemoglobin variants (proteoforms) can become a hard task to accomplish. The aim of this work was to develop a mass spectrometry-based approach to quickly identify mutated protein sequences within globin chain variants. To reach this goal, a top-down electron transfer dissociation mass spectrometry method was developed for hemoglobin β chain analysis. A diagnostic product ion list was established with a color code strategy allowing to quickly and specifically localize a mutation in the hemoglobin β chain sequence. The method was applied to the analysis of rare hemoglobin β chain variants and an (A)γ-β fusion protein. The results showed that the developed data analysis process allows fast and reliable interpretation of top-down electron transfer dissociation mass spectra by nonexpert users in the clinical area.
    Full-text · Article · Mar 2015 · Analytical and Bioanalytical Chemistry
  • Source
    Thierry Rabilloud · Pierre Lescuyer
    [Show abstract] [Hide abstract]
    ABSTRACT: Toxicoproteomics can be defined as the application of proteomic approaches to the understanding of toxicology problems, and this review deals with the various types of applications that have been described in the literature. Toxicoproteomics has been applied to very different classes of toxicants, from drugs and natural products to metals, or from industrial chemicals to nanoparticles and nanofibers. It has also been applied to address questions at different levels, from the search of the primary molecular targets of toxicants to the deciphering of the molecular responses of cells and tissues to toxicants. Although restricted to mammalian cells and tissues, this paper reviews these two levels of investigation and the different application areas of toxicoproteomics, leading to the discussion of the advantages and drawbacks of the most popular proteomic platforms. Some of the pending questions in toxicoproteomics are also critically addressed, such as the specificity, validation and result hierarchization issues. The question of shared mechanisms, which are encountered in many toxicoproteomic papers dealing with different toxicants, is also discussed. Finally the future of toxicoproteomics is briefly outlined.This article is protected by copyright. All rights reserved
    Preview · Article · Mar 2015 · Proteomics
  • Source
    Olivier Lassout · Denis Hochstrasser · Pierre Lescuyer
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The use of targeted LC-MS/MS methods for protein quantitation in clinical laboratories implies a careful evaluation of potential sources of analytical interference. In this study, we investigated whether inflammation, which is associated with both the release of proteolytic enzymes and increased expression of acute phase protease inhibitors, is affecting the accuracy of a haptoglobin selected reaction monitoring (SRM) assay. Results A SRM assay was developed and used to quantify haptoglobin in 57 human serum samples. The SRM assay had CVs (n = 6) of 12.9% at 698 mg/L and 11.8% at 1690 mg/L. Results of the SRM assay were compared to those of a commercial immunonephelometric test. Passing-Bablok regression gave a proportional bias of 0.92 (95% CI: 0.82 to 1.04) and a constant bias of 75.40 (95% CI: −71.09 to 251.04), indicating that SRM and immunonephelometric assays provided comparable results. We then investigated whether the accuracy of the SRM assay was influenced by the patient’s inflammatory state by assessing the relationship between the serum CRP concentration and the bias between the two methods. No correlation was found between the SRM/immunoassay bias and the CRP concentration (Pearson correlation coefficient r = 0.0898). Conclusions These data indicate that neither the release of proteolytic enzymes nor the increased level of protease inhibitors occurring during inflammation processes have a significant impact on the haptoglobin SRM assay accuracy. Such studies provide important information about potential sources of analytical interferences in protein SRM assays. Electronic supplementary material The online version of this article (doi:10.1186/1559-0275-11-38) contains supplementary material, which is available to authorized users.
    Preview · Article · Nov 2014 · Clinical Proteomics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Formal method validation for biospecimen processing in the context of accreditation in laboratories and biobanks is lacking. Serum and plasma processing protocols were validated for fitness-for-purpose in terms of key downstream endpoints, and this article demonstrates methodology for biospecimen processing method validation. Methods: Serum and plasma preparation from human blood was optimized for centrifugation conditions with respect to microparticle counts. Optimal protocols were validated for methodology and reproducibility in terms of acceptance criteria based on microparticle counts, DNA and hemoglobin concentration, and metabolomic and proteomic profiles. These parameters were also used to evaluate robustness for centrifugation temperature (4°C versus room temperature [RT]), deceleration (low, medium, high) and blood stability (after a 2-hour delay). Results: Optimal protocols were 10-min centrifugation for serum and 20-min for plasma at 2000 g, medium brake, RT. Methodology and reproducibility acceptance criteria were met for both protocols except for reproducibility of plasma metabolomics. Overall, neither protocol was robust for centrifugation at 4°C versus RT. RT gave higher microparticles and free DNA yields in serum, and fewer microparticles with less hemolysis in plasma. Overall, both protocols were robust for fast, medium, and low deceleration, with a medium brake considered optimal. Pre-centrifugation stability after a 2-hour delay was seen at both temperatures for hemoglobin concentration and proteomics, but not for microparticle counts. Conclusions: We validated serum and plasma collection methods suitable for downstream protein, metabolite, or free nucleic acid-based applications. Temperature and pre-centrifugation delay can influence analytic results, and laboratories and biobanks should systematically record these conditions in the scope of accreditation.
    No preview · Article · Jul 2014 · Biopreservation and Biobanking
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteomic analysis of tissues has advanced in recent years as instruments and methodologies have evolved. The ability to retrieve peptides from formalin-fixed paraffin embedded (FFPE) tissues followed by shotgun or targeted proteomic analysis is offering new opportunities in biomedical research. In particular, access to large collections of clinically annotated samples should enable the detailed analysis of pathologically relevant tissues in a manner previously considered unfeasible. In this paper, we review the current status of proteomic analysis of FFPE tissues with a particular focus on targeted approaches and the potential for this technique to be used in clinical research and clinical diagnosis. We also discuss the limitations and perspectives of the technique, particularly in regards of application in clinical diagnosis and drug discovery. This article is protected by copyright. All rights reserved.
    Full-text · Article · Mar 2014 · Proteomics
  • Source
    Thierry Rabilloud · Pierre Lescuyer
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteomics will celebrate its 20th year in 2014. In this relatively short period of time, its has invaded most areas of biology and its use will probably continue to spread in the future. These two decades have seen a considerable increase in the speed and sensitivity of protein identification and characterization, even from complex samples. Indeed, what was a challenge twenty years ago is now little more than a daily routine. Although not completely over, the technological challenge now makes room to another challenge, which is the best possible appraisal and exploitation of proteomic data to draw the best possible conclusions on a biological point of view. The point developed in this paper is that proteomic data are almost always fragmentary. This means in turn that although better than a mRNA level, a protein level is often insufficient to draw a valid conclusion on a biological point of view, especially in a world where post-translational modifications play such an important role. This means in turn that transformation of proteomic data into biological data requires an important intermediate layer of functional validation, i.e. not merely the confirmation of protein abundance changes by other methods, but a functional appraisal of the biological consequences of the protein level changes highlighted by the proteomic screens. This article is protected by copyright. All rights reserved.
    Preview · Article · Feb 2014 · Proteomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcium is vital to the normal functioning of multiple organ systems and its serum concentration is tightly regulated. Apart from CASR, the genes associated with serum calcium are largely unknown. We conducted a genome-wide association meta-analysis of 39,400 individuals from 17 population-based cohorts and investigated the 14 most strongly associated loci in ≤21,679 additional individuals. Seven loci (six new regions) in association with serum calcium were identified and replicated. Rs1570669 near CYP24A1 (P = 9.1E-12), rs10491003 upstream of GATA3 (P = 4.8E-09) and rs7481584 in CARS (P = 1.2E-10) implicate regions involved in Mendelian calcemic disorders: Rs1550532 in DGKD (P = 8.2E-11), also associated with bone density, and rs7336933 near DGKH/KIAA0564 (P = 9.1E-10) are near genes that encode distinct isoforms of diacylglycerol kinase. Rs780094 is in GCKR. We characterized the expression of these genes in gut, kidney, and bone, and demonstrate modulation of gene expression in bone in response to dietary calcium in mice. Our results shed new light on the genetics of calcium homeostasis.
    Full-text · Article · Sep 2013 · PLoS Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Precise and accurate quantification of proteins is essential in clinical laboratories. Here, we present a MS-based method for the quantification of intact proteins in an ion trap mass spectrometer. The developed method is based on the isolation and detection of precursor ions for the quantification of the corresponding signals. The method was applied for the quantification of hemoglobin (Hb) A2, a marker used for the diagnosis of β-thalassemia trait. The α and δ globin chains, corresponding to total Hb and HbA2 respectively, were isolated in the ion trap at specific charge states and ejected without activation. Areas of the corresponding isolated precursor ions were used to calculate the δ to α ratio. Three series of quantifications were performed at seven different days. The standard curve fitted linearly (R2=0.9982) and allowed quantification of HbA2 over a concentration range from 3% to 18% of total Hb. Analytical imprecision ranged from 3.5% to 5.3%, which is enough to determine if HbA2 level is below 3.5% or above 3.7%. In conclusion, our method reaches precision requirements that would be acceptable for the quantitative measurement of diagnostic proteins, such as HbA2, in clinical laboratories.
    No preview · Article · Jul 2013 · Analytical Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteomics is a key tool in the identification of new bile biomarkers for differentiating malignant and nonmalignant biliary stenoses. Unfortunately, the complexity of bile and the presence of molecules interfering with protein analysis represent an obstacle for quantitative proteomic studies in bile samples. The simultaneous need to introduce purification steps and minimize the use of pre-fractionation methods inevitably leads to protein loss and limited quantifications. This dramatically reduces the chance of identifying new potential biomarkers. In the present study, we included differential centrifugation as a preliminary step in a quantitative proteomic workflow involving iTRAQ labeling, peptide fractionation by OFFGEL electrophoresis and LC-MS/MS, to compare protein expression in bile samples collected from patients with malignant or nonmalignant biliary stenoses. A total of 1,267 proteins were identified, including a set of 322 newly described bile proteins, mainly belonging to high-density cellular fractions. The subsequent comparative analysis led to a 5-fold increase in the number of quantified proteins over previously published studies and highlighted 104 proteins overexpressed in malignant samples. Finally, immunoblot verifications performed on a cohort of 8 malignant (pancreatic adenocarcinoma, n=4; cholangiocarcinoma, n=4) and 5 nonmalignant samples (chronic pancreatitis, n=3; biliary stones, n=2) confirmed the results of proteomic analysis for three proteins: olfactomedin-4, syntenin-2 and ras-related C3 botulinum toxin substrate 1. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
    Full-text · Article · Jul 2013 · Biochimica et Biophysica Acta
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differentiating malignant from nonmalignant biliary stenoses is challenging. This could be facilitated by the measurement of cancer biomarkers in bile. We aimed at (i) identifying new cancer biomarkers by comparative proteomic analysis of bile collected from patients with a malignant or benign biliary stenosis (exploratory phase) and (ii) verifying the accuracy of the newly identified potential biomarkers for discriminating malignant versus nonmalignant biliary stenoses in a larger group of patients (confirmation phase). Overall, 66 proteins were found overexpressed (ratio > 1.5) in at least one cancer condition using proteomic analysis and 7 proteins were increased in all malignant/nonmalignant diseases comparisons. Preliminary screening by immunoblot highlighted carcinoembryonic cell adhesion molecule 6 (CEAM6), a cell surface protein overexpressed in many human cancers, as an interesting candidate biomarker. ELISA subsequently confirmed CEAM6 as a potential bile biomarker for distinguishing malignant from benign biliary stenoses with a receiver operating characteristic (ROC) area under the curve (AUC) of 0.92 (specificity 83%, sensitivity 93%, positive predictive value 93%, and negative predictive value 83%). No significant difference in serum CEAM6 level was found between malignant and nonmalignant samples. Combining bile CEAM6 and serum CA19-9 in a panel further improved diagnostic accuracy for malignant stenoses (AUC 0.96, specificity 83%, sensitivity 97%, positive predictive value 93%, and negative predictive value 91%). CEAM6 measurement in bile could be clinically useful to discriminate between malignant and nonmalignant causes of biliary stricture. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
    Full-text · Article · Jun 2013 · Biochimica et Biophysica Acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Acute pancreatitis is an inflammatory disease of the pancreas, which varies greatly in course and severity. Severe forms are associated with serious local and/or systemic complications, and eventually death. The pathobiology of acute pancreatitis is complex. Animal models have been developed to investigate pathobiological processes and identify factors determining disease course. We performed a time-course proteomic analysis using a rat model of severe necrotizing acute pancreatitis induced by taurocholate perfusion in the pancreatic ducts. Results showed that levels of proteins associated to a given biological process changed in a coordinated fashion after disease onset. It was possible to follow the response of a particular pathobiological process to pancreatitis induction and to compare the course of protein pathways. Proteins involved in acinar cell secretion were found to follow a different kinetics than other cellular processes. After an initial decrease, secretory pathway-associated proteins raised again at 18 h post-induction. This phenomenon coincided with a burst in the expression of pancreatitis-associated protein (REG3A), an acute phase protein produced by the exocrine pancreas, and with the decrease of classical markers of pancreatic injury, suggesting that the expression of proteins associated to the secretory pathway may be a modulating factor of pancreas injury. Biological significance: Acute pancreatitis (AP) is a complex inflammatory disease, the pathobiology of which is not yet fully understood. Various animal models, relying on different mechanisms of disease induction, have been developed in order to investigate pathobiological processes of AP. In this study, we performed a time-course proteomic analysis to investigate changes of the pancreas proteome occurring in an experimental model of AP induced by perfusion of taurocholate, a bile acid, into the pancreatic duct. This experimental model is characterized by a severe disease with pancreatic necrosis and systemic inflammation. The objectives of this study were to determine the kinetics of functionally related proteins in the early steps of the experimental disease in order to identify protein pathways playing key roles in AP pathobiology and to correlate these data with parameters classically used to assess disease severity. The present work provides for the first time an overview of protein expression in the pancreas during the course of taurocholate-induced necrotizing AP. We believe that correlation of these results with data obtained using proteomic or biochemical approaches in various experimental models of AP will help in highlighting new features, generating hypotheses and constitute therefore a strong and reliable basis for further targeted investigations.
    No preview · Article · Apr 2013 · Journal of proteomics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Urine results from coordinated activity of glomerular and tubular compartments of the kidney. As a footprint of these cellular functional processes, urinary exosomes, 40-80nm membrane vesicles released after fusion with the plasma membrane into the extracellular environment by renal epithelial cells, are a source for identification of proteins and investigation of their role in the kidney. Aim of the present study was the identification of podocyte exosome proteins based on urine immunoabsorption using podocyte-specific CR1-immunocoated beads followed by proteomic analysis using LC MS/MS technics. This methodology allowed the identification of 1195 proteins. Using a bioinformatic approach, 27 brain-expressed proteins were identified, 14 out of them were newly demonstrated expressed in the kidney at a mRNA level, and, one of them, the COMT protein, was demonstrated expressed in podocytes at a protein level. These results, attesting the reliability of the methodology to identify podocyte proteins, need now to be completed by further experiments to analyze more precisely their biological function(s) in the podocytes.
    No preview · Article · Jan 2013 · Journal of proteomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A mass spectrometry-based assay combining the specificity of selected reaction monitoring and the protein ion activation capabilities of electron transfer dissociation was developed and employed for the rapid identification of hemoglobin variants from whole blood without previous proteolytic cleavage. The analysis was performed in a robust ion trap mass spectrometer operating at nominal mass accuracy and resolution. Subtle differences in globin sequences, resulting with mass shifts of about one Da, can be unambiguously identified. These results suggest that mass spectrometry analysis of entire proteins using electron transfer dissociation can be employed on clinical samples in a workflow compatible with diagnostic applications.
    Full-text · Article · Aug 2012 · Journal of the American Society for Mass Spectrometry

  • No preview · Article · Aug 2012 · Journal of proteomics

  • No preview · Article · Jun 2012 · International Journal of Laboratory Hematology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerebrospinal fluid (CSF) rhinorrhea is a serious condition that may result in severe complications. Various laboratory tests, relying on the detection of CSF-specific proteins in nasal secretions, have been developed but diagnosis remains challenging. The aim of this study was to evaluate two new methods targeting either ß2-transferrin or beta-trace-protein. Rhinorrhea samples from patients suspected of CSF leakage (n=36) were analyzed using two-dimensional gel electrophoresis (2-DE) for CSF rhinorrhea diagnosis. Twelve patients with rhinorrhea strongly suggestive of a CSF leak also underwent a fluorescein test. The same cohort was retrospectively analyzed with a beta-trace protein immunoblot developed in-house (n=36) and a new commercial ß2-transferrin immunofixation assay (Sebia, Evry, France) (n=33). 2-DE was positive in 9 patients suffering from rhinorrhea following skull base fracture (n=3), post-surgery (n=4), or spontaneously (n=2). The 27 remaining cases were negative. These results were confirmed by the beta-trace protein immunoblot and ß2-transferrin immunofixation tests, except for one sample found negative with 2-DE but positive with the two other assays. Results from the three analytical methods were concordant with fluorescein tests. Beta-trace protein immunoblot and ß2-transferrin immunofixation assays are fast and reliable methods that allow detecting CSF leakage in nasal fluid with high sensitivity and specificity.
    No preview · Article · Mar 2012 · Clinica chimica acta; international journal of clinical chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Renal tubulo-interstitial fibrosis is a non-specific process, representing the final common pathway for all kidney diseases, irrespective of their initial cause, histological injury, or etiology, leading to gradual expansion of the fibrotic mass which destroys the normal structure of the tissue and results in organ dysfunction and, ultimately, in end-stage organ failure. Proteomic studies of the fibrotic pathophysiological mechanisms have been performed in cell cultures, animal models and human tissues, addressing some of the key issues. This article will review proteomic contribution to the raising current knowledge on renal fibrosis biology and also mention seminal open questions to which proteomic techniques and proteomists could fruitfully contribute.
    No preview · Article · May 2011 · Journal of proteomics

Publication Stats

1k Citations
235.96 Total Impact Points

Institutions

  • 2011-2016
    • Hôpitaux Universitaires de Genève
      • • Département de médecine génétique et de laboratoire
      • • Service de médecine de laboratoire
      Genève, Geneva, Switzerland
  • 2004-2015
    • University of Geneva
      • • Department of Human Protein Science
      • • Department of Genetics and Laboratory Medicine
      • • Faculty of Medicine
      Genève, Geneva, Switzerland
  • 2013
    • Wake Forest School of Medicine
      • Department of Biostatistical Sciences
      Winston-Salem, North Carolina, United States
  • 2003-2006
    • Cea Leti
      Grenoble, Rhône-Alpes, France