Phillip L Geissler

University of California, Berkeley, Berkeley, California, United States

Are you Phillip L Geissler?

Claim your profile

Publications (105)651.44 Total impact

  • Asaph Widmer-Cooper · Phillip L Geissler
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticles are often covered in ligand monolayers, which can undergo a temperature-dependent order-disorder transition that switches the particle-particle interaction from repulsive to attractive in solution. In this work we examine how changes in the ligand surface coverage and facet dimensions affect the ordering of ligands, the arrangement of nearby solvent molecules, and the interaction between ligand monolayers on different particles. In particular, we consider the case of strongly bound octadecyl ligands on the (100) facet of CdS in the presence of an explicit n-hexane solvent. Depending on the facet dimensions and surface coverage, we observe three distinct ordered states that differ in how the ligands are packed together, and which affect the thickness of the ligand shell and the structure of the ligand-solvent interface. The temperature dependence of the order-disorder transition also broadens and shifts to lower temperature in a non-linear manner as the nanoscale is approached from above. We find that ligands on nanoscale facets can behave very similarly to those on macroscopic surfaces in solution, and that some facet dimensions affect the ligand alignment more strongly than others. As the ligands order, the interaction between opposing monolayers becomes attractive, even well below full surface coverage. The strength of attraction per unit surface area is strongly affected by ligand coverage, but only weakly by facet width. Conversely, we find that bringing two monolayers together just above the order-disorder transition temperature can induce ordering and attraction.
    No preview · Article · Jan 2016 · ACS Nano
  • Nadine Schwierz · Christina V. Frost · Phillip L. Geissler · Martin Zacharias
    [Show abstract] [Hide abstract]
    ABSTRACT: Filamentous ß-amyloid aggregates are crucial for the pathology of Alzheimer's disease. Despite the tremendous biomedical importance, the molecular pathway of growth propagation is not completely understood and remains challenging to investigate by simulations due to the long time scales involved. Here, we apply extensive all-atom molecular dynamics simulations in explicit water to obtain free energy profiles and kinetic information from position-dependent diffusion profiles for three different Aß<9-40>-growth processes: Fibril elongation by single monomers at the structurally unequal filament tips and association of larger filament fragments. Our approach provides insight into the molecular steps of the kinetic pathway and allows close agreement with experimental binding free energies and macroscopic growth rates. Water plays a decisive role and solvent entropy is identified as the main driving force for assembly. Fibril growth is disfavored energetically due to cancellation of direct peptide-peptide interactions and solvation effects. The kinetics of growth is consistent with the characteristic dock/lock mechanism and docking is at least two orders of magnitude faster. During initial docking, interactions are mediated by transient non-native hydrogen bonds which efficiently catch the incoming monomer or fragment already at separations of about 3 nm. In subsequent locking, the dynamics is much slower due to formation of kinetically trapped conformations caused by long-lived non-native hydrogen bonds. Fibril growth additionally requires collective motion of water molecules to create a dry binding interface. Fibril growth is further retarded due to reduced mobility of the involved hydration water, evident from a two-fold reduction of the diffusion coefficient.
    No preview · Article · Dec 2015 · Journal of the American Chemical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: Demixing can occur in systems of two or more particle species that experience different driving forces, e.g., mixtures of self-propelled active particles or of oppositely charged colloids subject to an electric field. Here we show with macroscopic experiments and computer simulations that the forces underlying such non-equilibrium segregation can be used to control the self-assembly of particles that lack attractive interactions. We demonstrate that, depending on the direction, amplitude and frequency of a periodic external force acting on one particle species, the structures formed by a second, undriven species can range from compact clusters to elongated, string-like patterns.
    No preview · Article · Dec 2015 · Soft Matter
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modern theories of the hydrophobic effect highlight its dependence on length scale, emphasizing in particular the importance of interfaces that emerge in the vicinity of sizable hydrophobes. We recently showed that a faithful treatment of such nanoscale interfaces requires careful attention to the statistics of capillary waves, with significant quantitative implications for the calculation of solvation thermodynamics. Here we show that a coarse-grained lattice model in the spirit of those pioneered by Chandler and coworkers, when informed by this understanding, can capture a broad range of hydrophobic behaviors with striking accuracy. Specifically, we calculate probability distributions for microscopic density fluctuations that agree very well with results of atomistic simulations, even many standard deviations from the mean, and even for probe volumes in highly heterogeneous environments. This accuracy is achieved without adjustment of free parameters, as the model is fully specified by well-known properties of liquid water. As illustrative examples of its utility, we characterize the free energy profile for a solute crossing the air-water interface, and compute the thermodynamic cost of evacuating the space between extended nanoscale surfaces. Together, these calculations suggest that a highly reduced model for aqueous solvation can serve as the basis for efficient multiscale modeling of spatial organization driven by hydrophobic and interfacial forces.
    Preview · Article · Jul 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Manipulating the photophysical properties of light-absorbing units is a crucial element in the design of biomimetic light-harvesting systems. Using a highly tunable synthetic platform combined with transient absorption and time-resolved fluorescence measurements and molecular dynamics simulations, we interrogate isolated chromophores covalently linked to different positions in the interior of the hydrated nanoscale cavity of a supramolecular protein assembly. We find that, following photoexcitation, the time scales over which these chromophores are solvated, undergo conformational rearrangements, and return to the ground state are highly sensitive to their position within this cavity and are significantly slower than in a bulk aqueous solution. Molecular dynamics simulations reveal the hindered translations and rotations of water molecules within the protein cavity with spatial specificity. The results presented herein show that fully hydrated nanoscale protein cavities are a promising way to mimic the tight protein pockets found in natural light-harvesting complexes. We also show that the interplay between protein, solvent, and chromophores can be used to substantially tune the relaxation processes within artificial light-harvesting assemblies in order to significantly improve the yield of interchromophore energy transfer and extend the range of excitation transport. Our observations have implications for other important, similarly sized bioinspired materials, such as nanoreactors and biocompatible targeted delivery agents.
    No preview · Article · Jun 2015 · The Journal of Physical Chemistry B
  • Source
    Todd R. Gingrich · Phillip L. Geissler
    [Show abstract] [Hide abstract]
    ABSTRACT: Importance sampling of trajectories has proved a uniquely successful strategy for exploring rare dynamical behaviors of complex systems in an unbiased way. Carrying out this sampling, however, requires an ability to propose changes to dynamical pathways that are substantial, yet sufficiently modest to obtain reasonable acceptance rates. Satisfying this requirement becomes very challenging in the case of long trajectories, due to the characteristic divergences of chaotic dynamics. Here we examine schemes for addressing this problem, which engineer correlation between a trial trajectory and its reference path, for instance using artificial forces. Our analysis is facilitated by a modern perspective on Markov Chain Monte Carlo sampling, inspired by non-equilibrium statistical mechanics, which clarifies the types of sampling strategies that can scale to long trajectories. Viewed in this light, the most promising such strategy guides a trial trajectory by manipulating the sequence of random numbers that advance its stochastic time evolution, as done in a handful of existing methods. In cases where this "noise guidance" synchronizes trajectories effectively, such as the Glauber dynamics of a two-dimensional Ising model, we show that efficient path sampling can be performed even for very long trajectories.
    Preview · Article · Apr 2015 · The Journal of Chemical Physics
  • Kateri H DuBay · Gregory R Bowman · Phillip L Geissler
    [Show abstract] [Hide abstract]
    ABSTRACT: Folded protein structures are both stable and dynamic. Historically, our clearest window into these structures came from X-ray crystallography, which generally provided a static image of each protein’s singular “folded state”, highlighting its stability. Deviations away from that crystallographic structure were difficult to quantify, and as a result, their potential functional consequences were often neglected. However, several dynamical and statistical studies now highlight the structural variability that is present within the protein’s folded state. Here we review mounting evidence of the importance of these structural rearrangements; both experiment and computation indicate that folded proteins undergo substantial fluctuations that can greatly influence their function.
    No preview · Article · Feb 2015 · Accounts of Chemical Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a stochastic heat engine driven by a cyclic non-equilibrium protocol, fluctuations in work and heat give rise to a fluctuating efficiency. Using computer simulations and tools from large deviation theory, we have examined these fluctuations in detail for a model two-state engine. We find in general that the form of efficiency probability distributions is similar to those described by Verley et al. [arXiv:1404.3095 (2014)], in particular featuring a local minimum in the long-time limit. In contrast to the time-symmetric engine protocols studied previously, however, this minimum need not occur at the value characteristic of a reversible Carnot engine. Furthermore, while the local minimum may reside at the global minimum of a large deviation rate function, it does not generally correspond to the least likely efficiency measured over any finite time.
    Preview · Article · Sep 2014 · New Journal of Physics
  • Phillip L. Geissler

    No preview · Article · Aug 2014 · ChemInform
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Photoautotrophic organisms efficiently regulate absorption of light energy to sustain photochemistry while promoting photoprotection. Photoprotection is achieved in part by triggering a series of dissipative processes termed non-photochemical quenching (NPQ), which depend on the re-organization of photosystem (PS) II supercomplexes in thylakoid membranes. Using atomic force microscopy, we characterized the structural attributes of grana thylakoids from Arabidopsis thaliana to correlate differences in PSII organization with the role of SOQ1, a recently discovered thylakoid protein that prevents formation of a slowly reversible NPQ state. We developed a statistical image analysis suite to discriminate disordered from crystalline particles and classify crystalline arrays according to their unit cell properties. Through detailed analysis of the local organization of PSII supercomplexes in ordered and disordered phases, we found evidence that interactions among light-harvesting antenna complexes are weakened in the absence of SOQ1, inducing protein rearrangements that favor larger separations between PSII complexes in the majority (disordered) phase and reshaping the PSII crystallization landscape. The features we observe are distinct from known protein rearrangements associated with NPQ, providing further support for a role of SOQ1 in a novel NPQ pathway. The particle clustering and unit cell methodology developed here is generalizable to multiple types of microscopy and will enable unbiased analysis and comparison of large data sets.
    Full-text · Article · Jul 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We solve a simple model that supports a dynamic phase transition and show conditions for the existence of the transition. Using methods of large deviation theory we analytically compute the joint rate function for activity and entropy production rates of the trajectories on a large ring with a single heterogeneous link. The joint rate function demonstrates two dynamical phases - one localized and the other delocalized, but the marginal rate functions do not always exhibit the underlying transition. We discuss how symmetries in dynamic order parameters influence the transition, such that distributions for certain dynamic order parameters need not reveal an underlying bistability. We discuss the implications of the transition on the response of bacterial cells to antibiotic treatment, arguing that even the simple models of a cell cycle lacking an explicit bistability will exhibit a bistability of dynamical phases.
    Preview · Article · Jun 2014 · Physical Review E
  • Source
    Michael Grünwald · Phillip L Geissler
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticles with "sticky patches" have long been proposed as building blocks for the self-assembly of complex structures. The synthetic realizability of such patchy particles, however, greatly lags behind predictions of patterns they could form. Using computer simulations, we show that structures of the same genre can be obtained from a solution of simple isotropic spheres, provided control only over their sizes and a small number of binding affinities. In a first step, finite clusters of well-defined structure and composition emerge from natural dynamics with high yield. In effect a kind of patchy particle, these clusters can further assemble into a variety of complex superstructures, including filamentous networks, ordered sheets, and highly porous crystals.
    Preview · Article · May 2014 · ACS Nano
  • Source
    Antonia S J S Mey · Phillip L Geissler · Juan P Garrahan
    [Show abstract] [Hide abstract]
    ABSTRACT: We explore the dynamical large deviations of a lattice heteropolymer model of a protein by means of path sampling of trajectories. We uncover the existence of nonequilibrium dynamical phase transitions in ensembles of trajectories between active and inactive dynamical phases, whose nature depends on the properties of the interaction potential. We consider three potentials: two heterogeneous interaction potentials and a homogeneous Gō potential. When preserving the full heterogeneity of interactions due to a given amino acid sequence, either in a fully interacting model or in a native contacts interacting model (heterogeneous Gō model), the observed dynamic transitions occur between equilibrium highly native states and highly native but kinetically trapped states. A native activity is defined that allows us to distinguish these dynamic phases. In contrast, for the homogeneous Gō model, where all native interaction energies are uniform and the amino acid sequence plays no role, the dynamical transition is a direct consequence of the static bistability between the unfolded and the native state. In the two heterogeneous interaction models the native-active and native-inactive states, despite their thermodynamic similarity, have widely varying dynamical properties, and the transition between them occurs even in lattice proteins whose sequences are designed to make them optimal folders.
    Preview · Article · Mar 2014 · Physical Review E
  • Source
    Gregory R Bowman · Phillip L Geissler
    [Show abstract] [Hide abstract]
    ABSTRACT: Basic principles of statistical mechanics require that proteins sample an ensemble of conformations at any nonzero temperature. However, it is still common to treat the crystallo-graphic structure of a protein as the structure of its native state, largely because high-resolution structural characterization of protein flexibility remains a profound challenge. To as-sess the typical degree of conformational heterogeneity within folded proteins, we construct Markov state models describing the thermodynamics and kinetics of proteins ranging from 72 to 263 residues in length. Each of these models is built from hundreds of microseconds of atomically detailed molecular dynamics simulations. Examination of the side-chain degrees of freedom reveals that almost every residue visits at least two rotameric states over this time frame, with rotamer transition rates spanning a wide range of timescales (from nanoseconds to tens of microseconds). We also report substantial backbone dynamics on timescales longer than are typically addressed by experimental measures of protein flexibility, such as NMR or-der parameters. Finally, we demonstrate that these extensive rearrangements are consistent with NMR and crystallographic data, which supports the validity of our models. Altogether, the-se results depict the interior of proteins not as well-ordered solids, as is often imagined, but instead as dense fluids, which undergo substantial structural fluctuations despite their high packing fraction.
    Preview · Article · Feb 2014 · The Journal of Physical Chemistry B
  • Source
    Gregory R. Bowman · Phillip L. Geissler · Susan Marqusee

    Preview · Article · Jan 2014 · Biophysical Journal
  • Source

    Preview · Article · Jan 2014 · Biophysical Journal
  • Source
    Suriyanarayanan Vaikuntanathan · Phillip L Geissler
    [Show abstract] [Hide abstract]
    ABSTRACT: The physics of air-water interfaces plays a central role in modern theories of the hydrophobic effect. Implementing these theories, however, has been hampered by the difficulty of addressing fluctuations in the shape of such soft interfaces. We show that this challenge is a fundamental consequence of mapping long wavelength density variations onto discrete degrees of freedom. Drawing from studies of surface roughness in lattice models, we account for the resulting nonlinearities simply but accurately. Simulations show that this approach captures complex solvation behaviors quantitatively.
    Preview · Article · Jan 2014 · Physical Review Letters
  • Source
    Asaph Widmer-Cooper · Phillip L Geissler
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first nearly atomistic molecular dynamics study of nanorod-nanorod association in explicit solvent, showing that inter-rod forces can be dominated by microscopic factors absent in common continuum descriptions. Specifically, we find that alkane ligands on faceted CdS nanorods in n-hexane undergo a temperature-dependent order-disorder transition akin to that of self-assembled monolayers on macroscopic substrates. This collective ligand alignment organizes nearby solvent molecules, strongly influencing the statistics of rod-rod separation. The strong temperature-dependence of this mechanism could be exploited in the laboratory to manipulate and optimize the assembly of ordered structures.
    Preview · Article · Dec 2013 · Nano Letters
  • Source
    Anna R Schneider · Phillip L Geissler
    [Show abstract] [Hide abstract]
    ABSTRACT: Photosystem II (PSII) and its associated light-harvesting complex II (LHCII) are highly concentrated in the stacked grana regions of photosynthetic thylakoid membranes. PSII-LHCII supercomplexes can be arranged in disordered packings, ordered arrays, or mixtures thereof. The physical driving forces underlying array formation are unknown, complicating attempts to determine a possible functional role for arrays in regulating light harvesting or energy conversion efficiency. Here, we introduce a coarse-grained model of protein interactions in coupled photosynthetic membranes, focusing on just two particle types that feature simple shapes and potential energies motivated by structural studies. Reporting on computer simulations of the model's equilibrium fluctuations, we demonstrate its success in reproducing diverse structural features observed in experiments, including extended PSII-LHCII arrays. Free energy calculations reveal that the appearance of arrays marks a phase transition from the disordered fluid state to a system-spanning crystal. The predicted region of fluid-crystal coexistence is broad, encompassing much of the physiologically relevant parameter regime; we propose experiments that could test this prediction. Our results suggest that grana membranes lie at or near phase coexistence, conferring significant structural and functional flexibility to this densely packed membrane protein system.
    Preview · Article · Sep 2013 · Biophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze the probability distribution for entropy production rates of trajectories evolving on a class of out-of-equilibrium kinetic networks. These networks can serve as simple models for driven dynamical systems, which are of particular importance in biological processes, where energy fluxes typically result in non-equilibrium dynamics. By analyzing the fluctuations in the entropy production, we demonstrate the emergence, in a large system size limit, of a dynamic phase transition between two distinct dynamical regimes.
    Preview · Article · Jul 2013 · Physical Review E

Publication Stats

5k Citations
651.44 Total Impact Points

Institutions

  • 1999-2016
    • University of California, Berkeley
      • Department of Chemistry
      Berkeley, California, United States
  • 2008
    • Stanford University
      Palo Alto, California, United States
    • CSU Mentor
      Long Beach, California, United States
  • 2005
    • Lawrence Berkeley National Laboratory
      Berkeley, California, United States
    • Columbia University
      • Department of Chemistry
      New York, New York, United States
  • 2004
    • Massachusetts Institute of Technology
      • Department of Chemistry
      Cambridge, MA, United States
  • 2001-2002
    • Harvard University
      • Department of Chemistry and Chemical Biology
      Boston, MA, United States