P. G. Beck

Paris Diderot University, Lutetia Parisorum, Île-de-France, France

Are you P. G. Beck?

Claim your profile

Publications (57)257.39 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The accuracy of stellar masses and radii determined from asteroseismology is not known! We examine this issue for giant stars by comparing classical measurements of detached eclipsing binary systems (dEBs) with asteroseismic measurements from the Kepler mission. For star clusters, we extrapolate measurements of dEBs in the turn-off region to the red giant branch and the red clump where we investigate the giants as an ensemble. For the field stars, we measure dEBs with an oscillating giant component. These measurements allow a comparison of masses and radii calculated from a classical eclipsing binary analysis to those calculated from asteroseismic scaling relations and/or other asteroseismic methods. Our first results indicate small but significant systematic differences between the classical and asteroseismic measurements. In this contribution we show our latest results and summarize the current status and future plans. We also stress the importance of realizing that for giant stars mass cannot always be translated to age, since an unknown fraction of these evolved through a blue straggler phase with mass transfer in a binary system. Rough estimates of how many such stars to expect are given based on our findings in the open clusters NGC6819 and NGC6791.
    No preview · Article · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We combine Kepler photometry with ground-based spectra to present a comprehensive dynamical model of the double red giant eclipsing binary KIC 9246715. While the two stars are very similar in mass (M1 = 2.171 [+0.006 / -0.008], M2 = 2.149 [+0.006 / -0.008] Msun) and radius (R1 = 8.37 [+0.03 / -0.07], R2 = 8.30 [+0.04 / -0.03] Rsun), an asteroseismic analysis finds one main set of solar-like oscillations with unusually low-amplitude, wide modes. A second set of oscillations from the other star may exist, but this marginal detection is extremely faint. Because the two stars are nearly twins, KIC 9246715 is a difficult target for a precise test of the asteroseismic scaling relations, which yield M = 2.17 +/- 0.14 Msun and R = 8.26 +/- 0.18 Rsun. Both stars are consistent with the inferred asteroseismic properties, but we suspect the main oscillator is Star 2 because it is less active than Star 1. We find evidence for stellar activity and modest tidal forces acting over the 171-day eccentric orbit, which are likely responsible for the essential lack of solar-like oscillations in one star and weak oscillations in the other. Mixed modes indicate the main oscillating star is on the secondary red clump (a core-He-burning star), and stellar evolution modeling supports this with a coeval history for a pair of red clump stars. This system is a useful case study and paves the way for a detailed analysis of more red giants in eclipsing binaries, an important benchmark for asteroseismology.
    Full-text · Article · Jan 2016 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Solar-analog stars provide an excellent opportunity to study the Sun's evolution, i.e. the changes with time in stellar structure, activity, or rotation for solar-like stars. The unparalleled photometric data from the NASA space telescope Kepler allows us to study and characterise solar-like stars through asteroseismology. We aim to spectroscopically investigate the fundamental parameter and chromospheric activity of solar analogues and twins, based on observations obtained with the HERMES spectrograph and combine them with asteroseismology. Therefore, we need to build a solar atlas for the spectrograph, to provide accurate calibrations of the spectroscopically determined abundances of solar and late type stars observed with this instrument and thus perform differential spectral comparisons. We acquire high-resolution and high signal-to-noise spectroscopy to construct three solar reference spectra by observing the reflected light of Vesta and Victoria asteroids and Europa (100<S/N<450) with the \Hermes spectrograph. We then observe the Kepler solar analog KIC3241581 (S/N~170). We constructed three solar spectrum atlases from 385 to 900 nm obtained with the Hermes spectrograph from observations of two bright asteroids and Europa. A comparison between our solar spectra atlas to the Kurucz and HARPS solar spectrum shows an excellent agreement. KIC3241581 was found to be a long-periodic binary system. The fundamental parameter for the stellar primary component are Teff=5689+/-11K, logg=4.385+/-0.005, [Fe/H]=+0.22+/-0.01, being in agreement with the published global seismic values confirming its status of solar analogue. KIC 3241581 is a metal rich solar analogue with a solar-like activity level in a binary system of unknown period. The chromospheric activity level is compatible to the solar magnetic activity.
    Full-text · Article · Dec 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we study the dynamics of the stellar interior of the early red-giant star KIC 4448777 by asteroseismic inversion of 14 splittings of the dipole mixed modes obtained from {\it Kepler} observations. In order to overcome the complexity of the oscillation pattern typical of red-giant stars, we present a procedure which involves a combination of different methods to extract the rotational splittings from the power spectrum. We find not only that the core rotates faster than the surface, confirming previous inversion results generated for other red giants (Deheuvels et al. 2012,2014), but we also estimate the variation of the angular velocity within the helium core with a spatial resolution of $\Delta r=0.001R$ and verify the hypothesis of a sharp discontinuity in the inner stellar rotation (Deheuvels et al. 2014). The results show that the entire core rotates rigidly with an angular velocity of about $\langle\Omega_c/2\pi\rangle=748\pm18$~nHz and provide evidence for an angular velocity decrease through a region between the helium core and part of the hydrogen burning shell; however we do not succeed to characterize the rotational slope, due to the intrinsic limits of the applied techniques. The angular velocity, from the edge of the core and through the hydrogen burning shell, appears to decrease with increasing distance from the center, reaching an average value in the convective envelope of $\langle\Omega_s/2\pi\rangle=68\pm22$~nHz. Hence, the core in KIC~4448777 is rotating from a minimum of 8 to a maximum of 17 times faster than the envelope. We conclude that a set of data which includes only dipolar modes is sufficient to infer quite accurately the rotation of a red giant not only in the dense core but also, with a lower level of confidence, in part of the radiative region and in the convective envelope.
    Full-text · Article · Nov 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The detection of mixed modes that are split by rotation in Kepler red giants has made it possible to probe the internal rotation profiles of these stars, which brings new constraints on the transport of angular momentum in stars. Mosser et al. (2012) have measured the rotation rates in the central regions of intermediate-mass core helium burning stars (secondary clump stars). Our aim was to exploit& the rotational splittings of mixed modes to estimate the amount of radial differential rotation in the interior of secondary clump stars using Kepler data, in order to place constraints on angular momentum transport in intermediate-mass stars. We selected a subsample of Kepler secondary clump stars with mixed modes that are clearly rotationally split. By applying a thorough statistical analysis, we showed that the splittings of both gravity-dominated modes (trapped in central regions) and p-dominated modes (trapped in the envelope) can be measured. We then used these splittings to estimate the amount of differential rotation by using inversion techniques and by applying a simplified approach based on asymptotic theory (Goupil et al. 2013). We obtained evidence for a weak radial differential rotation for six of the seven targets that were selected, with the central regions rotating $1.8\pm0.3$ to $3.2\pm1.0$ times faster than the envelope. The last target was found to be consistent with a solid-body rotation. This demonstrates that an efficient redistribution of angular momentum occurs after the end of the main sequence in the interior of intermediate-mass stars, either during the short-lived subgiant phase, or once He-burning has started in the core. In either case, this should bring constraints on the angular momentum transport mechanisms that are at work.
    Preview · Article · Jun 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The space-borne missions CoRoT and Kepler have provided a large amount of precise photometric data. Among the stars observed, red giants show a rich oscillation pattern that allows their precise characterization. Long-duration observations allow for investigating the fine structure of this oscillation pattern. A common pattern of oscillation frequency was observed in red giant stars, which corresponds to the second-order development of the asymptotic theory. This pattern, called the universal red giant oscillation pattern, describes the frequencies of stellar acoustic modes. We aim to investigate the deviations observed from this universal pattern, thereby characterizing them in terms of the location of the second ionization zone of helium. We also show how this seismic signature depends on stellar evolution. We measured the frequencies of radial modes with a maximum likelihood estimator method, then we identified a modulation corresponding to the departure from the universal oscillation pattern. We identify the modulation component of the radial mode frequency spacings in more than five hundred red giants. The variation in the modulation that we observe at different evolutionary states brings new constraints on the interior models for these stars. We also derive an updated form of the universal pattern that accounts for the modulation and provides highly precise radial frequencies.
    Preview · Article · May 2015 · Astronomy and Astrophysics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aims. EE Cam belongs to a group of slightly evolved main-sequence A stars with intermediate rotational velocities. The pulsation frequencies and their mode identification of this star are of interest in order to compare these with those known for the high-amplitude σ Scuti stars (HADS) and the common fast-rotating low-amplitude σ Scuti pulsators. Methods. The variability of the σ Scuti star EE Cam was observed photometrically for more than 300 nights from 2006 to 2010. Results. Forty pulsation frequencies are identified, ranging from 3.4 to 13.3 cd-1 (40 to 154 μHz). The frequency distribution of the residuals suggests the presence of a large number of additional small-amplitude modes in the same frequency range. We compare the observed phase differences and amplitude ratios with those predicted by pulsation models. The dominant mode at 4.93 cd-1 is found to be a radial mode, while the mode at 5.21 cd-1 is identified as a nonradial l = 1 mode. Furthermore, when we compare the frequency range of the detected modes with detailed stellar models of pulsational instability, the radial mode is found to be the fundamental mode. Conclusions. We have studied and presented the pulsation behavior of EE Cam. It demonstrates that a moderately rotating star can exhibit the behavior of the two groups of σ Scuti stars: the identification of the dominant mode as the radial fundamental is similar to that found in the slowly rotating HADS, and the presence of a very large number of low-amplitude nonradial modes resembles the property of the fast rotating low-amplitude δ Scuti stars.
    No preview · Article · Mar 2015 · Astronomy and Astrophysics
  • Source

    Preview · Article · Jan 2015 · The European Physical Journal Conferences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The unparalleled photometric data obtained by NASA's Kepler Space Telescope has led to improved understanding of red-giant stars and binary stars. We discuss the characterization of known eccentric system, containing a solar-like oscillating red-giant primary component. We also report several new binary systems that are candidates for hosting an oscillating companion. A powerful approach to study binary stars is to combine asteroseimic techniques with light curve fitting. Seismology allows us to deduce the properties of red giants. In addition, by modeling the ellipsoidal modulations we can constrain the parameters of the binary system. An valuable independent source are ground-bases, high-resolution spectrographs.
    Full-text · Article · Dec 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are complemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of order 80 K in Teff , 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with Teff and log g. Our effective temperature scale is between 0-200 K cooler than that expected from the Infrared Flux Method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in Teff and log g consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.
    Full-text · Article · Oct 2014 · The Astrophysical Journal Supplement Series
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Red giants are evolved stars which exhibit solar-like oscillations. Although a multitude of stars have been observed with space telescopes, only a handful of red-giant stars were targets of spectroscopic asteroseismic observing projects. We search for solar-like oscillations in the two bright red-giant stars $\gamma$ Psc and $\theta^1$ Tau from time series of ground-based spectroscopy and determine the frequency of the excess of oscillation power $\nu_{max}$ and the mean large frequency separation $\Delta\nu$ for both stars. The radial velocities of $\gamma$ Psc and $\theta^1$ Tau were monitored for 120 and 190 days, respectively. Nearly 9000 spectra were obtained. To reach the accurate radial velocities, we used simultaneous thorium-argon and iodine-cell calibration of our optical spectra. In addition to the spectroscopy, we acquired VLTI observations of $\gamma$ Psc for an independent estimate of the radius. Also 22 days of observations of $\theta^1$ Tau with the MOST-satellite were analysed. The frequency analysis of the radial velocity data of $\gamma$ Psc revealed an excess of oscillation power around 32 $\mu$Hz and a large frequency separation of 4.1$\pm$0.1$\mu$Hz. $\theta^1$ Tau exhibits oscillation power around 90 $\mu$Hz, with a large frequency separation of 6.9$\pm$0.2$\mu$Hz. Scaling relations indicate that $\gamma$ Psc is a star of about $\sim$1 M$_\odot$ and $\sim$10 R$_\odot$. $\theta^1$ Tau appears to be a massive star of about $\sim$2.7 M$_\odot$ and $\sim$11 R$_\odot$. The radial velocities of both stars were found to be modulated on time scales much longer than the oscillation periods. While the mass of $\theta^1$ Tau is in agreement with results from dynamical parallaxes, we find a lower mass for $\gamma$ Psc than what is given in the literature. The long periodic variability agrees with the expected time scales of rotational modulation.
    Full-text · Article · Jul 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: More than 40 years of ground-based photometric observations of the delta Sct star 4CVn revealed 18 independent oscillation frequencies, including radial as well as non-radial p-modes of low spherical degree l<=2. From 2008 to 2011, more than 2000 spectra were obtained at the 2.1-m Otto-Struve telescope at the McDonald Observatory. We present the analysis of the line-profile variations, based on the Fourier-parameter fit method, detected in the absorption lines of 4CVn, which carry clear signatures of the pulsations. From a non-sinusoidal, periodic variation of the radial velocities, we discovered that 4CVn is an eccentric binary system, with an orbital period Porb = 124.44 +/- 0.03 d and an eccentricity e = 0.311 +/- 0.003. We firmly detect 20 oscillation frequencies, 9 of which are previously unseen in photometric data, and attempt mode identification for the two dominant modes, f1 = 7.3764 c/d and f2 = 5.8496 c/d, and determine the prograde or retrograde nature of 7 of the modes. The projected rotational velocity of the star, vsini ~ 106.7 km/s, translates to a rotation rate of veq/vcrit >= 33%. This relatively high rotation rate hampers unique mode identification, since higher-order effects of rotation are not included in the current methodology. We conclude that, in order to achieve unambiguous mode identification for 4CVn, a complete description of rotation and the use of blended lines have to be included in mode-identification techniques.
    Full-text · Article · Jul 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The NASA Kepler mission has observed more than 190,000 stars in the constellations of Cygnus and Lyra. Around 4 years of almost continuous ultra high-precision photometry have been obtained reaching a duty cycle higher than 90% for many of these stars. However, almost regular gaps due to nominal operations are present in the light curves at different time scales. In this paper we want to highlight the impact of those regular gaps in asteroseismic analyses and we try to find a method that minimizes their effect in the frequency domain. To do so, we isolate the two main time scales of quasi regular gaps in the data. We then interpolate the gaps and we compare the power density spectra of four different stars: two red giants at different stages of their evolution, a young F-type star, and a classical pulsator in the instability strip. The spectra obtained after filling the gaps in the selected solar-like stars show a net reduction in the overall background level, as well as a change in the background parameters. The inferred convective properties could change as much as 200% in the selected example, introducing a bias in the p-mode frequency of maximum power. When global asteroseismic scaling relations are used, this bias can lead up to a variation in the surface gravity of 0.05 dex. Finally, the oscillation spectrum in the classical pulsator is cleaner compared to the original one.
    Full-text · Article · May 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kepler ultra-high precision photometry of long and continuous observations provide a unique dataset in which surface rotation and variability can be studied for thousands of stars. Because many of these old field stars also have independently measured asteroseismic ages, measurements of rotation and activity are particularly interesting in the context of age-rotation-activity relations. These relations generally lack good calibrators at old ages, a problem that this Kepler sample of stars is uniquely suited to address. We study the surface rotation and the photometric magnetic activity of a subset of 540 solar-like stars on the main-sequence and the subgiant branch for which stellar pulsations have been measured. The rotation period is determined by comparing the results from two different sets of calibrated data and from two complementary analyses. Global photometric levels of magnetic activity in this sample of stars are also extracted by using a photometric activity index, which takes into account the rotation period of the stars. Out of the 540 solar-like pulsating stars in our sample, we successfully measured the rotation period of 310 stars (excluding known binaries and candidate planet host stars). The rotation periods lay between 1 and 100 days. The remaining stars are classified into two categories: those not showing any surface rotation (6 stars), and those in which the four analyses did not converge to a single and robust rotation period (213). The photometric magnetic activity levels were computed and for 61.5% of the dwarfs, its value is comparable to the solar one. We then extract an age-rotation relation only for the dwarfs with very precise asteroseismic age estimations, highlighting the necessity of excluding the hot stars and the subgiants when inferring such relations. We also studied age-activity-rotation relations with a hint of correlation for the subgiants.
    Full-text · Article · Mar 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: About 1% of giant stars have been shown to have large surface Li abundances, which is unexpected according to standard stellar evolution models. Several scenarios for lithium production have been proposed, but it is still unclear why these Li-rich giants exist. A missing piece in this puzzle is the knowledge of the exact stage of evolution of these stars. Using low-and-high-resolution spectroscopic observations, we have undertaken a survey of lithium-rich giants in the Kepler field. In this letter, we report the finding of the first confirmed Li-rich core-helium-burning giant, as revealed by asteroseismic analysis. The evolutionary timescales constrained by its mass suggest that Li-production most likely took place through non-canonical mixing at the RGB-tip, possibly during the helium flash.
    Full-text · Article · Feb 2014 · The Astrophysical Journal Letters

  • No preview · Article · Jan 2014 · EAS Publications Series
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We carried out an extensive observational study of the Slowly Pulsating B (SPB) star, HD 25558. The ≈2000 spectra obtained at different observatories, the ground-based and MOST satellite light curves revealed that this object is a double-lined spectroscopic binary with an orbital period of about nine years. The observations do not allow the inference of an orbital solution. We determined the physical parameters of the components, and found that both lie within the SPB instability strip. Accordingly, both show line-profile variations due to stellar pulsations. 11 independent frequencies were identified in the data. All the frequencies were attributed to one of the two components based on pixel-by-pixel variability analysis of the line profiles. Spectroscopic and photometric mode identification was also performed for the frequencies of both stars. These results suggest that the inclination and rotation of the two components are rather different. The primary is a slow rotator with ≈6 d period, seen at ≈60° inclination, while the secondary rotates fast with ≈1.2 d period, and is seen at ≈20° inclination. Spectropolarimetric measurements revealed that the secondary component has a magnetic field with at least a few hundred Gauss strength, while no magnetic field can be detected in the primary.
    Full-text · Article · Dec 2013 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The unparalleled photometric data obtained by NASA's Kepler space telescope led to an improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccentric non-eclipsing binaries, exhibiting ellipsoidal modulations, have been detected with Kepler. We aim to study the properties of eccentric binary systems containing a red giant star and derive the parameters of the primary giant component. We apply asteroseismic techniques to determine masses and radii of the primary component of each system. For a selected target, light and radial velocity curve modelling techniques are applied to extract the parameters of the system. The effects of stellar on the binary system are studied. The paper presents the asteroseismic analysis of 18 pulsating red giants in eccentric binary systems, for which masses and radii were constrained. The orbital periods of these systems range from 20 to 440days. From radial velocity measurements we find eccentricities between e=0.2 to 0.76. As a case study we present a detailed analysis of KIC5006817. From seismology we constrain the rotational period of the envelope to be at least 165 d, roughly twice the orbital period. The stellar core rotates 13 times faster than the surface. From the spectrum and radial velocities we expect that the Doppler beaming signal should have a maximum amplitude of 300ppm in the light curve. Through binary modelling, we determine the mass of the secondary component to be 0.29$\pm$0.03\,$M_\odot$. For KIC5006817 we exclude pseudo-synchronous rotation of the red giant with the orbit. The comparison of the results from seismology and modelling of the light curve shows a possible alignment of the rotational and orbital axis at the 2$\sigma$ level. Red giant eccentric systems could be progenitors of cataclysmic variables and hot subdwarf B stars.
    Full-text · Article · Dec 2013 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (muchfuss) aims to discover subdwarf-B stars with massive compact companions such as overmassive white dwarfs (M > 1.0 M_sun), neutron stars or black holes. From the 127 subdwarfs with substantial radial-velocity variations discovered in the initial survey, a number of interesting objects have been selected for extensive follow-up. After an initial photometry run with BUSCA revealed that FBS 0117+396 is photometrically variable both on long and short timescales, we chose it as an auxiliary target during a 6-night multi-color photometry run with Ultracam. Spectroscopy was obtained at a number of observatories in order to determine the binary period and obtain a radial-velocity amplitude. After establishing an orbital period of P = 0.252 d, and removing the signal associated with the irradiated hemisphere of the M-dwarf companion, we were able to detect ten pulsation periods in the Fourier spectrum of the light curve. Two pulsation modes are found to have short periods of 337 and 379 s, and at least eight modes are found with periods between 45 minutes and 2.5 hours. This establishes that FBS 0117+396 is an sdB+dM reflection binary, in which the primary is a hybrid pulsator, and the first one found with this particular melange of flavours.
    Full-text · Article · Oct 2013 · Astronomy and Astrophysics
  • [Show abstract] [Hide abstract]
    ABSTRACT: The three tables contain the photometry from different observatories as plotted with different colours in Figure 6 of the paper. (3 data files).
    No preview · Article · Oct 2013

Publication Stats

819 Citations
257.39 Total Impact Points

Institutions

  • 2014-2015
    • Paris Diderot University
      Lutetia Parisorum, Île-de-France, France
  • 2006-2015
    • University of Vienna
      • Department of Astrophysics
      Wien, Vienna, Austria
  • 2010-2014
    • University of Leuven
      Louvain, Flemish, Belgium
    • Catholic University of Louvain
      Лувен-ла-Нев, Walloon, Belgium
  • 2013
    • University of Birmingham
      • School of Physics and Astronomy
      Birmingham, England, United Kingdom