Patricia K Tithof

The University of Tennessee Medical Center at Knoxville, Knoxville, Tennessee, United States

Are you Patricia K Tithof?

Claim your profile

Publications (26)

  • Source
    Patricia K Tithof · Sean M Richards · Mona A Elgayyar · [...] · Kenneth S Ramos
    [Show abstract] [Hide abstract] ABSTRACT: Exposure to environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs) found in coal tar mixtures and tobacco sources, is considered a significant risk factor for the development of heart disease in humans. The goal of this study was to determine the influence of PAHs present at a Superfund site on human coronary artery endothelial cell (HCAEC) phospholipase A(2) (PLA(2)) activity and apoptosis. Extremely high levels of 12 out of 15 EPA high-priority PAHs were present in both the streambed and floodplain sediments at a site where an urban creek and its adjacent floodplain were extensively contaminated by PAHs and other coal tar compounds. Nine of the 12 compounds and a coal tar mixture (SRM 1597A) activated group IVC PLA(2) in HCAECs, and activation of this enzyme was associated with histone fragmentation and poly (ADP) ribose polymerase (PARP) cleavage. Genetic silencing of group IVC PLA(2) inhibited both (3)H-fatty acid release and histone fragmentation by PAHs and SRM 1597A, indicating that individual PAHs and a coal tar mixture induce apoptosis of HCAECs via a mechanism that involves group IVC PLA(2). Western blot analysis of aortas isolated from feral mice (Peromyscus leucopus) inhabiting the Superfund site showed increased PARP and caspase-3 cleavage when compared to reference mice. These data suggest that PAHs induce apoptosis of HCAECs via activation of group IVC PLA(2).
    Full-text Article · Dec 2010 · Archives of Toxicology
  • Source
    James D Godkin · Mary P Roberts · Mona Elgayyar · [...] · Patricia K Tithof
    [Show abstract] [Hide abstract] ABSTRACT: Prostaglandins (PG), produced by the uterine endometrium, are key regulators of several reproductive events, including estrous cyclicity, implantation, pregnancy maintenance and parturition. Phospholipase A2 (PLA2) catalyzes the release of arachidonic acid from membrane phospholipids, the rate-limiting step in PG biosynthesis. The bovine endometrial (BEND) cell line has served as a model system for investigating regulation of signaling mechanisms involved in uterine PG production but information concerning the specific PLA2 enzymes involved and their role in regulation of this process is limited. The objectives of this investigation were to evaluate the expression and activities of calcium-dependent group IVA (PLA2G4A) and calcium-independent group VI (PLA2G6) enzymes in the regulation of BEND cell PG production. Cells were grown to near-confluence and treated with phorbol 12, 13 dibutyrate (PDBu), interferon-tau (IFNT), the PLA2G4A inhibitor pyrrolidine-1 (PYR-1), the PLA2G6 inhibitor bromoenol lactone (BEL) and combinations of each. Concentrations of PGF2alpha and PGE2 released into the medium were determined. Western blot analysis was performed on cellular protein to determine effects of treatment on expression of PLA2G4A, PLA2G6 and PLA2G4C. PLA2 assays were performed on intact cells by measuring arachidonic acid and linoleic acid release and group-specific PLA2 activity assays were performed on cell lysates. BEND cells produced about 10-fold more PGE2 than PGF2alpha under resting conditions. Production of both PGs increased significantly in response to PDBu-stimulation. PYR-1 significantly diminished production of both PGs by resting cells and abolished the stimulatory effect of PDBu. BEL stimulated production of both PGs. IFNT reduced both PGE2 and PGF2alpha production by resting cells and diminished PDBu stimulation of PG production. Conversely, IFNT did not significantly reduce BEL stimulation of PG production. Cellular expression of PLA2G4A was enhanced by PDBu and this response was diminished by IFNT. Expression of PLA2G6 was not observed to be affected by treatments and no PLA2G4C expression was observed. Arachidonic acid release from intact cells was significantly increased by PDBu and this effect was attenuated by PYR-1 but not by BEL. Release of linoleic acid from intact cells was stimulated by PDBu and inhibited by BEL but not PYR-1. Group specific PLA2-activity assays demonstrated both PLA2G4A and PLA2G6 activity. Results from this study demonstrate that PGE2 and PGF2-alpha production by BEND cells is mediated by the activity and expression of PLA2G4A. Interferon-tau treatment diminished expression of PLA2G4A and PG production. BEND cells were shown to express PLA2G6 but, unlike primary or early passage luminal bovine endometrial cells, stimulation of PLA2G6 activity was not associated with increased PG production.
    Full-text Article · Oct 2008 · Reproductive Biology and Endocrinology
  • Source
    Patricia K Tithof · Mary P Roberts · Wei Guan · [...] · James D Godkin
    [Show abstract] [Hide abstract] ABSTRACT: The rate-limiting step in prostaglandin (PG) biosynthesis is catalyzed by phospholipase A2 (PLA2) enzymes which hydrolyze arachidonic acid from membrane phospholipids. Despite their importance in uterine PG production, little is known concerning the specific PLA2 enzymes that regulate arachidonic acid liberation in the uterine endometrium. The objectives of this study were to evaluate the expression and activities of calcium-independent Group VI and Group IVC PLA2 (PLA2G6 and PLA2G4C) and calcium-dependent Group IVA PLA2 (PLA2G4A) enzymes in the regulation of bovine uterine endometrial epithelial cell PG production. Bovine endometrial epithelial cells in culture were treated with oxytocin, interferon-tau and the PLA2G6 inhibitor bromoenol lactone, alone and in combination. Concentrations of PGF2alpha and PGE2 released into the medium were analyzed. Western blot analysis was performed on cellular protein to determine the effects of treatments on expression of PLA2G4A, PLA2G6 and PLA2G4C. Group-specific PLA2 activity assays were performed on cell lysates following treatment with oxytocin, interferon-tau or vehicle (control), alone and in combination. To further evaluate the role of specific PLA2 enzymes in uterine cell PG biosynthesis, cells were transfected with cDNAs encoding human PLA2G6 and PLA24C, treated as described above and PG assays performed. Constitutive cell production of PGF2alpha was about two-fold higher than PGE2. Oxytocin stimulated production of both PGs but the increase of PGF2alpha was significantly greater. Interferon-tau diminished oxytocin stimulation of both PGs. The PLA2G6 inhibitor, bromoenol lactone, abolished oxytocin-stimulated production of PGF2alpha. Treatments had little effect on PLA2G4A protein expression. In contrast, oxytocin enhanced expression of PLA2G6 and this effect was diminished in the presence of interferon-tau. Expression of PLA2G4C was barely detectable in control and oxytocin treated cells but it was enhanced in cells treated with interferon-tau. Oxytocin stimulated PLA2 activity in assays designed to evaluate PLA2G6 activity and interferon-tau inhibited this response. In assays designed to measure PLA2G4C activity, only interferon-tau was stimulatory. Cells overexpressing PLA2G6 produced similar quantities of the two PGs and these values were significantly higher than PG production by non-transfected cells. Oxytocin stimulated production of both PGs and this response was inhibited by interferon-tau. Bromoenol lactone inhibited oxtocin stimulation of PGF2alpha production but stimulated PGE2 production, both in the absence and presence of oxytocin. Cells over-expressing PLA2G4C produced more PGE2 than PGF2alpha and interferon-tau stimulated PGE2 production. Results from these studies indicate that oxytocin stimulation of uterine PGF2alpha production is mediated, at least in part, by up-regulation of PLA2G6 expression and activity. In addition to its known inhibitory effect on oxytocin receptor expression, interferon-tau represses oxytocin-stimulated PLA2G6 expression and activity and this contributes to diminished PGF2alpha production. Furthermore, endometrial cell PGE2 biosynthesis was associated with PLA2G4C expression and activity and interferon-tau was stimulatory to this process.
    Full-text Article · Feb 2007 · Reproductive Biology and Endocrinology
  • Kelly Brant · Wei Guan · Patricia Tithof · Rita Loch Caruso
    [Show abstract] [Hide abstract] ABSTRACT: Phospholipase A2 (PLA2) enzymes catalyze the rate-limiting step in eicosanoid production by liberating arachidonic acid from membrane phospholipids. There is limited information regarding the expression pattern and activity of uterine PLA2 enzymes during pregnancy. Polychlorinated biphenyls (PCBs) are a group of persistent environmental toxicants previously associated with decreased gestation length that are capable of activating PLA2. The purpose of the present study was to determine whether uterine sensitivity to PCB stimulation is dependent on PLA2 expression, comparing rat uterine PLA2 expression in Gestational Day (gd) 10 versus gd20. Western blot analysis revealed a significant increase in the expression of calcium-dependent PLA2G2A and a 50-kDa protein immunoreactive to calcium-independent PLA2G6 antibody in gd20 compared to gd10 rat uterine tissue. The increased expression of the 50-kDa PLA2G6 was associated with a gestational age-related increase in endometrial calcium-independent PLA2 activity that was sensitive to inhibition by bromoenol lactone (P < 0.05). Longitudinal uterine strips isolated from gd10 or gd20 rat were suspended in muscle baths to evaluate uterine contractions following exposure to the ortho substituted congener PCB 50. Exposure to 50 and 100 microM PCB 50 significantly increased the frequency of gd20, but not gd10, uteri compared to solvent (dimethyl sulfoxide) controls (P < 0.05). Pharmacologic inhibition of PLA2G6, but not PLA2G2A, attenuated PCB-induced stimulation of gd20 uterine contractions (P < 0.05). These data suggest that PCB 50 stimulates uterine contractions by activating endometrial PLA2G6. Furthermore, gestation age-related sensitivity to PCB is associated with an increase in the expression of a previously unidentified 50-kDa PLA2G6 in rat uterus.
    Article · May 2006 · Biology of Reproduction
  • Greg Ochs · Mary Roberts · Patricia Tithof · James Godkin
    Conference Paper · Jan 2006
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental and food contaminants with known or suspected carcinogenic properties. In this study, we have evaluated whether PAHs activate the early growth response (EGR-1) gene and bind to peroxisome proliferator-activated receptor alpha (PPAR alpha) and delta (PPAR beta/delta) in cell culture systems. Luciferase reporter systems were employed and several PAHs were evaluated for their ability to activate EGR-1 and PPARs. Some PAHs enhanced EGR-1 expression and activated PPAR alpha and PPAR beta. Among them, benz(a)anthracene was found to act as a relatively potent activator of PPAR alpha and PPAR beta/delta, and to significantly enhance EGR-1 transcription. These in vitro assays were confirmed by Western blot analysis, using cell lysates of tissue samples from mouse trapped at a highly contaminated Superfund site in the Chattanooga Creek floodplain in Chattanooga, Tennessee. We have found that a PPAR target gene, glycogen synthase kinase-3beta (GSK-3beta), was down-regulated and EGR-1 was up-regulated in the mouse samples of Chattanooga Creek. In addition, select PAHs repressed GSK-3beta and induced CYP4A in FaO rat hepatoma cells. In conclusion, PAHs activate PPAR alpha and PPAR beta/delta, and up-regulate EGR-1 expression in vitro as well as in vivo. These data may provide a diversity of PAH activity in several biological pathways.
    Full-text Article · Jun 2005 · Toxicological Sciences
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The transcription factor early growth response 1 (EGR1) was previously identified as a potential novel target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in human lung epithelial cells by toxicogenomic analysis. EGR1 has been implicated in the pathogenesis of vascular disease and is altered by a number of factors that include stress, inflammation, and hypoxia. Depending on its downstream targets or protein interactions, EGR1 regulates important biological processes that include cell growth, apoptosis, and differentiation. The following experiments were conducted to determine if EGR1 is indeed a target of TCDD and polycyclic aromatic hydrocarbons (PAHs) that can act through a similar mechanism. Pulmonary epithelial cells were exposed to TCDD for 24 h and an increase in EGR1 mRNA was measured. In addition, EGR1 protein was increased by TCDD and PAHs that have binding affinity to the aryl hydrocarbon receptor. The transcriptional activity of the EGR1 promoter was measured with a luciferase construct; however, no increases in luciferase activity were detected in TCDD or PAH-treated cells. Using actinomycin to inhibit RNA synthesis, we found that TCDD increased the half-life of EGR1 mRNA from 13 to 22 min. Thus, the increase in EGR1 expression appears to be mediated through a post-transcriptional mechanism that leads to the higher EGR1 protein levels in TCDD and PAH treated cells, compared to vehicle treated cells. Increased expression of a transcription factor EGR1 with tumorigenic and other biological activities could contribute to the deleterious pulmonary effects of exposure to these environmental agents.
    Full-text Article · Jan 2005 · Toxicological Sciences
  • [Show abstract] [Hide abstract] ABSTRACT: Leptin is a hormone secreted by adipocytes in correlation with total body fat mass. In addition to regulating energy homeostasis, leptin modulates immune functions such as macrophage phagocytosis and cytokine synthesis. Previously, we reported defective leukotriene synthesis in macrophages from leptin-deficient mice that could be restored with exogenous leptin. In the present study, we utilized macrophages from normal rodents to explore the mechanism by which leptin could enhance cellular leukotriene synthesis. Leptin pretreatment of either rat alveolar or murine peritoneal macrophages for 16 h dose dependently increased the synthesis of leukotriene B4 and cysteinyl leukotrienes in response to calcium ionophore or the particulate zymosan. Leptin also enhanced calcium ionophore-stimulated release of free arachidonic acid. Calcium-dependent and -independent arachidonoyl-selective phospholipase activities in macrophage lysates were likewise increased following leptin treatment. Immunoblot analysis of leptin-treated cells revealed that group IVC iPLA2 (cPLA2gamma) protein expression increased approximately 80%. These data demonstrate for the first time that phospholipase A2 activity and cPLA2gamma protein levels in alveolar macrophages represent targets for upregulation by leptin and provide previously unrecognized mechanisms by which this hormone can promote inflammatory responses.
    Article · Oct 2004 · AJP Lung Cellular and Molecular Physiology
  • Ahmed M Shoieb · Mona Elgayyar · Paul S Dudrick · [...] · Patricia K Tithof
    [Show abstract] [Hide abstract] ABSTRACT: Thymoquinone (TQ) is likely responsible for the chemotherapeutic effects of N. sativa extract; however, the cellular mechanisms remain ill-defined. TQ-induced cytotoxicity was investigated using canine osteosarcoma (COS31), its cisplatin-resistant variant (COS31/rCDDP), human breast adenocarcinoma (MCF7), human ovarian adenocarcinoma (BG-1) and Madin-Darby canine (MDCK) cell lines. TQ-induced cytotoxicity was determined using a proliferation assay (MTT assay) and apoptosis assays. Effects of TQ on the cell cycle were determined using flow cytometry. COS31/rCDDP resistant cells were the most sensitive cell line to TQ and MDCK cells were the least sensitive. TQ (25 micro M) induced apoptosis of COS31 cells 6 h after treatment and decreased the number of COS31 cells in S-phase and increased cells in G1-phase, indicating cell cycle arrest at G1. These results suggest that TQ kills cancer cells by a process that involves apoptosis and cell cycle arrest. Non-cancerous cells are relatively resistant to TQ.
    Article · Feb 2003 · International Journal of Oncology
  • Patricia K Tithof · Mona Elgayyar · Yeesook Cho · [...] · Marc Peters-Golden
    [Show abstract] [Hide abstract] ABSTRACT: Smoking is a major risk factor for endothelial cell injury and subsequent coronary artery disease. Epidemiological studies implicate the phospholipase A2/arachidonic acid cascade in the mechanism by which smoking causes heart disease. However, specific components of cigarette smoke that activate this pathway have not been identified. The purpose of this study was to investigate the effects of polycyclic aromatic hydrocarbons contained in cigarette smoke on phospholipase A2 (PLA2) activity and apoptosis of human coronary artery endothelial cells. 1-methylanthracene (1-MA), phenanthrene (PA), and benzo(a)pyrene (B(a)P) caused significant release of 3H-arachidonate from endothelial cells. 1-MA and PA, but not B(a)P, also caused significant release of 3H-linoleic acid. Release of fatty acids from membrane phospholipids preceded the onset of apoptosis. 3H-arachidonate release and apoptosis induced by 1-MA, B(a)P, and PA were inhibited by methylarachidonoyl-fluorophosphonate, an inhibitor of Groups IV and VI PLA2s. Bromoenol lactone, an inhibitor of Group VI enzymes, inhibited both 3H-arachidonate release and apoptosis induced by 1-MA and PA, but not B(a)P. MJ33, an inhibitor of the acidic calcium-independent PLA2, attenuated 3H-arachidonate release and apoptosis by PA, but not 1-MA or B(a)P. The presence of Groups IV and VI and the acidic iPLA2 in endothelial cells was demonstrated by reverse transcriptase-polymerase chain reaction and Western analysis. These data suggest that 1-MA, B(a)P and PA induce apoptosis of endothelial cells by a mechanism that involves activation of these three distinct isoforms of PLA2.
    Article · Oct 2002 · The FASEB Journal
  • Source
    Y Cakir · H K Plummer · P K Tithof · H M Schuller
    [Show abstract] [Hide abstract] ABSTRACT: Adenocarcinoma of the mammary gland is the leading type of cancer in women. Among these breast cancers those that are estrogen-responsive respond well to existing therapeutic regimens while estrogen non-responsive cancers metastasize widely, demonstrate a high relapse rate, and respond poorly to therapy. Over-expression of the arachidonic acid-metabolizing enzymes cyclooxygenase-2 and lypoxygenases is frequently observed in breast cancer, particularly the non-estrogen-responsive type, suggesting a role of the arachidonic acid (AA) cascade in the growth regulation of these malignancies. Adenocarcinomas of the lungs, pancreas and colon also frequently over-express AA-metabolizing enzymes, and recent evidence suggests that the growth-regulating AA-cascade in these malignancies is under beta-adrenergic control. Our current experiments have therefore tested the hypothesis that in analogy to these findings adenocarcinomas of the breast are also regulated by beta-adrenergic receptors via stimulation of the AA-cascade. Analysis of DNA synthesis by [3H]-thymidine incorporation assays in three estrogen-responsive and three estrogen non-responsive cell lines derived from human breast cancers demonstrated a significant reduction in DNA synthesis by beta-blockers and inhibitors of cyclooxygenase or lipoxygenases in all cell lines. Analysis of AA-release in one of the most responsive cell lines demonstrated a time-dependent increase in AA-release in response to the beta-adrenergic agonist isoproterenol. Analysis by RT-PCR revealed expression of beta2-adrenergic receptors in all cell lines whereas beta1-adrenergic receptors were not found in two of the estrogen non-responsive cell lines. Our data suggest that a significant subset of human breast cancers is under control of beta-adrenergic receptors via stimulation of the AA-cascade. These findings open up novel avenues for the prevention and clinical management of breast cancer, particularly the non-estrogen-responsive types. Moreover, our findings suggest that cardiovascular disease and adenocarcinomas in a variety of organ systems, including the breast may share common risk factors and benefit from similar preventive and treatment strategies.
    Full-text Article · Aug 2002 · International Journal of Oncology
  • P K Tithof · M Elgayyar · H M Schuller · [...] · R Andrews
    [Show abstract] [Hide abstract] ABSTRACT: Smoking causes endothelial cell (EC) injury; however, neither the components of cigarette smoke nor the mechanisms responsible for this injury are understood. The nitrosated derivative of nicotine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), has been implicated in the carcinogenic effects of tobacco; however, the effects of NNK on the cardiovascular system are largely unknown. NNK binds to beta1- and beta2-adrenergic receptors. Because beta-adrenergic receptor activation causes arachidonic acid (AA) release and cellular injury, we postulated that NNK causes EC injury by a mechanism that involves beta-adrenergic-mediated release of AA. NNK stimulated [3H]AA release from ECs, and this effect was mediated by both beta1- and beta2-adrenergic receptors because pretreatment with atenolol or ICI 118,551 inhibited the response. NNK also induced EC apoptosis, as measured by terminal deoxyribonucleotide transferase-mediated dUTP nick-end labeling and annexin V staining. NNK-mediated apoptosis was attenuated by pretreatment with atenolol or ICI 118,551. Furthermore, depletion of cellular AA by incubation with eicosapentaenoic acid abolished the apoptotic effect of NNK. These data suggest that NNK causes EC apoptosis by a mechanism that involves beta1- and beta2-adrenergic receptor-mediated release of AA.
    Article · Dec 2001 · AJP Heart and Circulatory Physiology
  • R. Gillis · P. Tithof · N. Neilsen · [...] · M. Karlstad
    Article · Jun 2001 · Shock
  • Source
    P K Tithof · J Olivero · K Ruehle · P E Ganey
    [Show abstract] [Hide abstract] ABSTRACT: The production of reactive oxygen species by organochlorine pesticides has been implicated in the toxicity and carcinogenicity of these compounds; however, the mechanism by which these agents stimulate the production of oxygen radicals is unknown. Phospholipase A2 (PLA2)-mediated release of arachidonic acid has been shown to play an essential role in superoxide anion (O2-) production in neutrophils exposed to various physiologic and pharmacologic agents. Therefore, studies were performed to determine if the organochlorine pesticides, lindane and dieldrin, activate neutrophils to produce O2- by a mechanism that requires PLA2. Production of O2- and 3H-AA release increased with similar kinetics and concentration-response relations in neutrophils activated with either dieldrin or lindane. Significant release of 3H-AA was seen in neutrophils stimulated with dieldrin or lindane in calcium-free medium and in the presence of the intracellular calcium chelator BAPTA-AM, suggesting that these agents stimulate a PLA2 that does not require calcium for activation. In addition, both O2- production and 3H-AA release were inhibited in a concentration-dependent manner by BEL, a mechanism-based inhibitor of calcium-independent PLA2. These data suggest that dieldrin and lindane stimulate O2- production by a mechanism that involves PLA2. However, release of 3H-AA was not abrogated completely by BEL nor, in the case of dieldrin, preserved entirely in the absence of calcium. This suggests that more than one isoform of PLA2 is activated by dieldrin and by lindane, and that one isoform is calcium-dependent.
    Full-text Article · Feb 2000 · Toxicological Sciences
  • P. K. Tithof
    Article · Jan 2000 · Toxicological Sciences
  • [Show abstract] [Hide abstract] ABSTRACT: Lung cancer is the leading cause of death in the United States, and it demonstrates a strong etiological association with smoking. The nicotine-derived nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) reproducibly induces pulmonary adenocarcinomas (ACs) in laboratory rodents and is considered an important contributing factor to the high lung cancer burden observed in smokers. It has been shown that the development of NNK-induced ACs in mice is reduced by inhibitors of cyclooxygenase and lipoxygenase and that the growth of human AC cell lines is regulated by beta-adrenergic receptors. On the basis of structural similarities of NNK with classic beta-adrenergic agonists, we tested the hypothesis that NNK stimulates the growth of human AC cells via agonist-binding to beta-adrenergic receptors, resulting in the release of arachidonic acid (AA). In support of this hypothesis, radioreceptor assays with transfected CHO cell lines stably expressing the human beta1- or beta2-adrenergic receptor demonstrated high affinity binding of NNK to each of these receptors. Two human AC cell lines expressed beta1- and beta2-adrenergic receptors by reverse transcription-PCR and responded to NNK with the release of AA and an increase in DNA synthesis. Beta-adrenergic antagonists completely blocked the release of AA and increase in DNA synthesis. The cyclooxygenase inhibitor aspirin and the 5-lipoxygenase inhibitor MK-886 both partially inhibited DNA synthesis in response to NNK. Our findings identify the direct interaction of NNK with beta-adrenergic, AA-dependent pathways as a novel mechanism of action which may significantly contribute to the high cancer-causing potential of this nitrosamine. Moreover, NNK may also contribute to the development of smoking-related nonneoplastic disease via this mechanism.
    Article · Oct 1999 · Cancer Research
  • MA Olszewski · N E Robinson · F X Zhu · [...] · P K Tithof
    [Show abstract] [Hide abstract] ABSTRACT: Neutrophilic inflammation in small airways (SA) and bronchospasm mediated via muscarinic receptors are features of chronic obstructive pulmonary disease in horses (COPD). Histamine, serotonin, and leukotrienes (LTs) are reported to be involved in the exacerbation of COPD, and currently, histamine has been shown to increase tension response to electrical field simulation (EFS) in equine SA. We tested the effects of these mediators and the effects of activated neutrophils on the cholinergic responses in SA. Histamine, serotonin, and LTD4 had a synergistic effect on EFS responses and only an additive effect on the tension response to exogenous ACh or methacholine. Atropine and TTX entirely eliminated the EFS-induced tension response in the presence of all three inflammatory mediators, indicating that augmentation of the EFS response applies only to the endogenous cholinergic response. Neutrophils isolated from control and COPD-affected horses were activated by zymosan, producing 18.1 +/- 2.3 and 25.0 +/- 2.3 nmol superoxide. 10(6) cells-1. 30 min-1, respectively. However, in contrast to the profound effect of mediators, incubation of SA for over 1 h in a suspension of up to 30 x 10(6) zymosan-treated neutrophils/ml did not significantly affect EFS responses of SA isolated from either control or COPD-affected horses. We conclude that in equine SA 1) the endogenous cholinergic responses are subject to strong facilitation by inflammatory mediators; 2) activated neutrophils do not affect cholinergic responses in SA; and 3) in acute bouts of equine COPD, histamine, LTD4, and serotonin (mediators primarily associated with type I allergic reaction) rather than mediators derived from neutrophils most likely contribute to increased cholinergic airway tone.
    Article · Apr 1999 · The American journal of physiology
  • P K Tithof · M Peters-Golden · P E Ganey
    [Show abstract] [Hide abstract] ABSTRACT: Arachidonic acid (AA) released from membrane phospholipids by phospholipase A2 (PLA2) is important as a substrate for eicosanoid formation and as a second messenger for superoxide anion (O2-) generation in neutrophils. Different isoforms of PLA2 in neutrophils might mobilize AA for different functions. To test this possibility, we sought to characterize the PLA2s that are activated by the neutrophil stimuli, Aroclor 1242, a mixture of polychlorinated biphenyls, and A23187, a calcium ionophore. Both Aroclor 1242 and A23187 caused release of [3H]AA; however, O2- production was seen only in response to Aroclor 1242. Eicosanoids accounted for >85% of the radioactivity recovered in the supernatant of A23187-stimulated cells but <20% of the radioactivity recovered from cells exposed to Aroclor 1242. Omission or chelation of calcium abolished A23187-induced AA release, but did not alter AA release in Aroclor 1242-stimulated neutrophils. AA release and O2- production in response to Aroclor 1242 were inhibited by bromoenol lactone (BEL), an inhibitor of calcium-independent PLA2. BEL, however, did not alter Calcium-independent activity was inhibited >80% by BEL, whereas calcium-dependent activity was inhibited <5%. Furthermore, calcium-independent, but not calcium-dependent, PLA2 activity was significantly enhanced by Aroclor 1242. These data suggest that Aroclor 1242 and A23187 activate distinct isoforms of PLA2 that are linked to different functions: Aroclor 1242 activates a calcium-independent PLA2 that releases AA for the generation of O2-, and A23187 activates a calcium-dependent PLA2 that mobilizes AA for eicosanoid production.
    Article · Jan 1998 · The Journal of Immunology
  • Patricia K. Tithof · Stephanie Watts · Patricia E. Ganey
    [Show abstract] [Hide abstract] ABSTRACT: Neutrophils produce superoxide anion (O2-) when exposed in vitro to Aroclor 1242, a mixture of polychlorinated biphenyls (PCBs). The mechanism for this effect shares some similarities with the mechanism by which the physiologic agonist f-Met-Leu-Phe (fMLP) activates neutrophils. Since production of O2- in response to fMLP involves GTP-binding proteins and protein tyrosine kinases (PTKs), the current study was undertaken to determine whether these signalling pathways are involved in PCB-induced neutrophil activation. Neutrophils exposed to Aroclor 1242 or fMLP produced significant O2-. Pretreatment of intact neutrophils with pertussis toxin or cholera toxin or exposure of permeabilized cells to GDPbetaS significantly inhibited O2- production in fMLP-treated neutrophils but did not alter the response to Aroclor 1242. Pretreatment with genistein, an inhibitor of PTKs, significantly inhibited O2- production in both Aroclor 1242- and fMLP-treated neutrophils; however, daidzein, a structural analogue of genistein which lacks activity against PTKs, was without effect. Exposure of neutrophils to Aroclor 1242 resulted in an increase within 1 min in tyrosine phosphorylation of proteins in the 40 and 60 kDa molecular mass ranges which persisted for up to 10 min. Similar results were obtained with 2,2',4,4'-tetrachlorobiphenyl (2,2',4,4'-TCB), a PCB congener that stimulates O2- production. In contrast, 3,3',4,4',5-pentachlorobiphenyl (3,3',4,4',5-PeCB), a congener that does not generate O2-, caused only a transient increase in tyrosine phosphorylation of proteins in the 40 kDa range with no effect on 60 kDa proteins. These data suggest that Aroclor 1242 activates neutrophils to produce O2- by a mechanism that requires tyrosine kinase activity; however, heterotrimeric G-proteins are not likely to be involved.
    Article · Jul 1997 · Biochemical Pharmacology
  • [Show abstract] [Hide abstract] ABSTRACT: Aroclor 1242, a mixture of polychlorinated biphenyls (PCBs), activates neutrophils to produce superoxide anion (O2-) by a mechanism that involves phospholipase C-dependent hydrolysis of membrane phosphoinositides; however, subsequent signal transduction mechanisms are unknown. We undertook this study to determine whether phospholipase A2-dependent release of arachidonic acid is involved in PCB-induced O2- production. We measured O2- production in vitro in glycogen-elicited, rat neutrophils in the presence and absence of the inhibitors of phospholipase A2: quinacrine, 4-bromophenacyl bromide (BPB), and manoalide. All three agents significantly decreased the amount of O2- detected during stimulation of neutrophils with Aroclor 1242. Similar inhibition occurred when neutrophils were activated with the classical stimuli, formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate. The effects of BPB and manoalide were not a result of cytotoxicity or other nonspecific effects, although data suggest that quinacrine is an O2- scavenger. Significant release of 3H-arachidonic acid preceded O2- production in neutrophils stimulated with Aroclor 1242 or fMLP. Manoalide, at a concentration that abolished O2- production, also inhibited the release of 3H-arachidonate. Aspirin, zileuton, or WEB 2086 did not affect Aroclor 1242-induced O2- production, suggesting that eicosanoids and platelet-activating factor are not needed for neutrophil activation by PCBs. Activation of phospholipase A2 and O2- production do not appear to involve the Ah receptor because a congener with low affinity, but not one with high affinity for this receptor, stimulated the release of arachidonic acid and O2-. These data suggest that Aroclor 1242 stimulates neutrophils to produce O2- by a mechanism that involves phospholipase A2-dependent release of arachidonic acid.
    Article · Feb 1996 · Environmental Health Perspectives