Michael Joulie

Paris Diderot University, Lutetia Parisorum, Île-de-France, France

Are you Michael Joulie?

Claim your profile

Publications (4)11.2 Total impact

  • Source
    Michael Joulie
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic phenomena are key contributors to the function of eukaryotic genomes. These processes act on chromatin, and they are used to render the genome dynamic, but also stable throughout successive rounds of cell division. Among epigenetic processes, DNA methylation is especially well known for its role in the regulation of gene expression.In mammals, DNA methylation is strongly correlated with transcriptional repression, and fulfills at least three essential roles. First, it maintains repeated sequences transcriptionally silenced, thus ensuring the stability of the genome. Second, it is responsible for the proper regulation of parentally imprinted genes, which are crucial regulators of embryonic development and adult life. Finally, DNA methylation ensures that some tissue-specific genes are kept inactive in the organs in which they should be repressed. Besides these roles in the physiology of normal cells, DNA methylation has strong links to cancer. Indeed the pattern of DNA methylation on the genome is frequently altered in cancer cells, and these anomalies contribute to transformation by several mechanisms.DNA methylation does not control transcription directly, but instead acts via a set of dedicated proteins that specifically recognize methylated DNA and repress transcription by acting at the chromatin level. At present, three families of such proteins, totalling 9 members altogether, are known in humans. However, several lines of evidence suggest that the list is not exhaustive, and that other human proteins that bind methylated DNA remain to be found. This was the goal of the current project.To this end, we opted for two distinct types approaches, an approach based on literature and a genetic approach. The study of candidate proteins does not allow us to identify new methylated DNA binding proteins and the genetic approach by phage display revealed two proteins of interest, HMGB1 and CHD3 that must now be validated by in vivo and in vitro approaches.Furthermore, we studied the regulation of DNA repeats by Zbtb4 in mice. Preliminary results show a regulation of minor satellites by Zbtb4. The role of this regulation will be analyse further in the future.
    Preview · Article · Sep 2011
  • Michael Joulie · Benoit Miotto · Pierre-Antoine Defossez
    [Show abstract] [Hide abstract]
    ABSTRACT: CpG islands (CGIs) are regions enriched in the dinucleotide CpG; they constitute the promoter of about 60% of mammalian genes. In cancer cells, some promoter-associated CGIs become heavily methylated on cytosines, and the corresponding genes undergo stable transcriptional silencing. Hypermethylated CGIs attract methyl-CpG-binding proteins (MBPs), which have been shown to recruit chromatin modifiers and cause transcriptional repression. These observations have led to the prevalent model that methyl-CpG-binding proteins are promoter-proximal transcriptional repressors. Recent discoveries challenge this idea and raise a number of questions. Here we discuss the following issues: what are other possible roles for the known MBPs? Why are these proteins not essential in mammals? Are there other MBPs left to discover? Could CpG methylation be nonessential?
    No preview · Article · Dec 2010 · BioEssays
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MBD5 and MBD6 are two uncharacterized mammalian proteins that contain a putative Methyl-Binding Domain (MBD). In the proteins MBD1, MBD2, MBD4, and MeCP2, this domain allows the specific recognition of DNA containing methylated cytosine; as a consequence, the proteins serve as interpreters of DNA methylation, an essential epigenetic mark. It is unknown whether MBD5 or MBD6 also bind methylated DNA; this question has interest for basic research, but also practical consequences for human health, as MBD5 deletions are the likely cause of certain cases of mental retardation. Here we report the first functional characterization of MBD5 and MBD6. We have observed that the proteins colocalize with heterochromatin in cultured cells, and that this localization requires the integrity of their MBD. However, heterochromatic localization is maintained in cells with severely decreased levels of DNA methylation. In vitro, neither MBD5 nor MBD6 binds any of the methylated sequences DNA that were tested. Our data suggest that MBD5 and MBD6 are unlikely to be methyl-binding proteins, yet they may contribute to the formation or function of heterochromatin. One isoform of MBD5 is highly expressed in oocytes, which suggests a possible role in epigenetic reprogramming after fertilization.
    Full-text · Article · Aug 2010 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: MBD5 and MBD6 are two uncharacterized mammalian proteins that contain a putative Methyl-Binding Domain (MBD). In the proteins MBD1, MBD2, MBD4, and MeCP2, this domain allows the specific recognition of DNA containing methylated cytosine; as a consequence, the proteins serve as interpreters of DNA methylation, an essential epigenetic mark. It is unknown whether MBD5 or MBD6 also bind methylated DNA; this question has interest for basic research, but also practical consequences for human health, as MBD5 deletions are the likely cause of certain cases of mental retardation. Principal Findings: Here we report the first functional characterization of MBD5 and MBD6. We have observed that the proteins colocalize with heterochromatin in cultured cells, and that this localization requires the integrity of their MBD. However, heterochromatic localization is maintained in cells with severely decreased levels of DNA methylation. In vitro, neither MBD5 nor MBD6 binds any of the methylated sequences DNA that were tested. Conclusions: Our data suggest that MBD5 and MBD6 are unlikely to be methyl-binding proteins, yet they may contribute to the formation or function of heterochromatin. One isoform of MBD5 is highly expressed in oocytes, which suggests a possible role in epigenetic reprogramming after fertilization.
    Full-text · Dataset · Aug 2010