Keisuke Kosaki

National Institutes of Health, Maryland, United States

Are you Keisuke Kosaki?

Claim your profile

Publications (5)23.5 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The osteophyte associated with osteoarthritis (OA) is a bony outgrowth formed at the margins of the affected joint through endochondral ossification-like processes. However, the mechanism of osteophyte formation and its pathogenesis are unclear. Perlecan (Hspg2), a heparan sulfate proteoglycan, is expressed in many extracellular tissues and plays critical roles in skeletal development and diseases. The aim of the present study is to identify the role of synovial perlecan in osteophyte formation using perinatal lethality rescued perlecan-knockout mice (Hspg2(-/-)-Tg) wherein perlecan expression is lacking in the synovial and other tissues, except for cartilage. We analyzed the development of osteophytes in joints of Hspg2(-/-)-Tg mice in two different animal models: the surgical OA model, in which the medial collateral ligament was transected and the medial meniscus was resected, and the TGF-β-induced osteophyte formation model. In the surgical OA model, the osteophyte size and maturation were significantly reduced in the OA joints of Hspg2(-/-)-Tg mice compared with control mice, while OA developed on the medial side of the knee joints with no differences in the cartilage degradation score or synovitis score between control and Hspg2(-/-)-Tg mice. The reduced osteophyte formation in Hspg2(-/-)-Tg mice was associated with reduced cell proliferation and chondrogenesis. In the TGF-β model, the osteophyte size and maturation were also significantly reduced in Hspg2(-/-)-Tg mice compared with control mice. Our findings suggest that synovial perlecan plays an important role in osteophyte development in OA, and they provide insights that may facilitate the development of OA therapy.
    No preview · Article · Jan 2013 · Matrix biology: journal of the International Society for Matrix Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myelination is essential for proper functioning of the CNS. In this study, we have identified a mouse mutation, designated furue, which causes tremors and hypomyelination in the CNS, particularly in the spinal cord, but not in the sciatic nerve of the PNS. In the spinal cord of the furue mice, myelination of small-diameter axons was dramatically reduced, and differentiation of oligodendrocytes, the myelin-forming cells in the CNS, was inhibited. We subsequently found that the furue mutation was associated with a transgene insertion into the teneurin-4 (Ten-4, Ten-m4/Odz4) gene, encoding a transmembrane protein of unknown function. Ten-4 was strongly expressed in the spinal cord of wild-type mice and was induced during normal oligodendrocyte differentiation. In contrast, in the furue mice, the expression of Ten-4 was absent. Differentiation and cellular process formation of oligodendrocytes were inhibited in primary cell culture from the furue mice. Cell differentiation and process formation were also inhibited in the oligodendrocyte progenitor cell line CG-4 after suppression of Ten-4 expression by shRNA. Furthermore, Ten-4 positively regulated focal adhesion kinase, an essential signaling molecule for oligodendrocyte process formation and myelination of small-diameter axons. These findings suggest that Ten-4 is a novel regulator of oligodendrocyte differentiation and that it plays a critical role in the myelination of small-diameter axons in the CNS.
    Full-text · Article · Aug 2012 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Perlecan (Hspg2) is a heparan sulfate proteoglycan expressed in basement membranes and cartilage. Perlecan deficiency (Hspg2(-/-)) in mice and humans causes lethal chondrodysplasia, which indicates that perlecan is essential for cartilage development. However, the function of perlecan in endochondral ossification is not clear. Here, we report the critical role of perlecan in VEGF signaling and angiogenesis in growth plate formation. The Hspg2(-/-) growth plate was significantly wider but shorter due to severely impaired endochondral bone formation. Hypertrophic chondrocytes were differentiated in Hspg2(-/-) growth plates; however, removal of the hypertrophic matrix and calcified cartilage was inhibited. Although the expression of MMP-13, CTGF, and VEGFA was significantly upregulated in Hspg2(-/-) growth plates, vascular invasion into the hypertrophic zone was impaired, which resulted in an almost complete lack of bone marrow and trabecular bone. We demonstrated that cartilage perlecan promoted activation of VEGF/VEGFR by binding to the VEGFR of endothelial cells. Expression of the perlecan transgene specific to the cartilage of Hspg2(-/-) mice rescued their perinatal lethality and growth plate abnormalities, and vascularization into the growth plate was restored, indicating that perlecan in the growth plate, not in endothelial cells, is critical in this process. These results suggest that perlecan in cartilage is required for activating VEGFR signaling of endothelial cells for vascular invasion and for osteoblast migration into the growth plate. Thus, perlecan in cartilage plays a critical role in endochondral bone formation by promoting angiogenesis essential for cartilage matrix remodeling and subsequent endochondral bone formation.
    Full-text · Article · Mar 2012 · Matrix biology: journal of the International Society for Matrix Biology

  • No preview · Article · Dec 2010 · Neuroscience Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Perlecan is a component of the basement membrane that surrounds skeletal muscle. The aim of the present study is to identify the role of perlecan in skeletal muscle hypertrophy and myostatin signaling, with and without mechanical stress, using a mouse model (Hspg2(-/-)-Tg) deficient in skeletal muscle perlecan. We found that myosin heavy chain (MHC) type IIb fibers in the tibialis anterior (TA) muscle of Hspg2(-/-)-Tg mice had a significantly increased fiber cross-sectional area (CSA) compared to control (WT-Tg) mice. Hspg2(-/-)-Tg mice also had an increased number of type IIx fibers in the TA muscle. Myostatin and its type I receptor (ALK4) expression was substantially decreased in the Hspg2(-/-)-Tg TA muscle. Myostatin-induced Smad activation was also reduced in a culture of myotubes from the Hspg2(-/-)-Tg muscle, suggesting that myostatin expression and its signaling were decreased in the Hspg2(-/-)-Tg muscle. To examine the effects of mechanical overload or unload on fast and slow muscles in Hspg2(-/-)-Tg mice, we performed tenotomy of the plantaris (fast) muscle and the soleus (slow) muscle. Mechanical overload on the plantaris muscle of Hspg2(-/-)-Tg mice significantly increased wet weights compared to those of control mice, and unloaded plantaris muscles of Hspg2(-/-)-Tg mice caused less decrease in wet weights compared to those of control mice. The decrease in myostatin expression was significantly profound in the overloaded plantaris muscle of Hspg2(-/-)-Tg mice, compared with that of control mice. In contrast, overloading the soleus muscle caused no changes in either type of muscle. These results suggest that perlecan is critical for maintaining fast muscle mass and fiber composition, and for regulating myostatin signaling.
    Full-text · Article · Jul 2010 · Matrix biology: journal of the International Society for Matrix Biology