J T Watson

Case Western Reserve University, Cleveland, Ohio, United States

Are you J T Watson?

Claim your profile

Publications (4)4.07 Total impact

  • Source
    J T Watson · R E Ritzmann
    [Show abstract] [Hide abstract]
    ABSTRACT: We have combined kinematic and electromyogram (EMG) analysis of running Blaberus discoidalis to examine how middle and hind leg kinematics vary with running speed and how the fast depressor coxa (Df) and fast extensor tibia (FETi) motor neurons affect kinematic parameters. In the range 2.5-10 Hz, B. discoidalis increases step frequency by altering the joint velocity and by reducing the time required for the transition from flexion to extension. For both Df and FETi the timing of recruitment coincides with the maximal frequency seen for the respective slow motor neurons. Df is first recruited at the beginning of coxa-femur (CF) extension. FETi is recruited in the latter half of femur-tibia (FT) extension during stance. Single muscle potentials produced by these fast motor neurons do not have pronounced effects on joint angular velocity during running. The transition from CF flexion to extension was abbreviated in those cycles with a Df potential occurring during the transition. One effect of Df activity during running may be to phase shift the beginning of joint extension so that the transition is sharpened. FETi is associated with greater FT extension at higher running speeds and may be necessary to overcome high joint torques at extended FT joint angles.
    Preview · Article · Feb 1998 · Journal of Comparative Physiology
  • Source
    J T Watson · R E Ritzmann
    [Show abstract] [Hide abstract]
    ABSTRACT: We have combined high-speed video motion analysis of leg movements with electromyogram (EMG) recordings from leg muscles in cockroaches running on a treadmill. The mesothoracic (T2) and metathoracic (T3) legs have different kinematics. While in each leg the coxa-femur (CF) joint moves in unison with the femurtibia (FT) joint, the relative joint excursions differ between T2 and T3 legs. In T3 legs, the two joints move through approximately the same excursion. In T2 legs, the FT joint moves through a narrower range of angles than the CF joint. In spite of these differences in motion, no differences between the T2 and T3 legs were seen in timing or qualitative patterns of depressor coxa and extensor tibia activity. The average firing frequencies of slow depressor coxa (Ds) and slow extensor tibia (SETi) motor neurons are directly proportional to the average angular velocity of their joints during stance. The average Ds and SETi firing frequency appears to be modulated on a cycle-by-cycle basis to control running speed and orientation. In contrast, while the frequency variations within Ds and SETi bursts were consistent across cycles, the variations within each burst did not parallel variations in the velocity of the relevant joints.
    Preview · Article · Feb 1998 · Journal of Comparative Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes the design and simulation of a cockroach-like hexapod robot which is under construction for the purpose of testing control principles which are being extracted from the cockroach. The cockroach was chosen because of its remarkable running and climbing capabilities and because much is known about its biomechanics and control. The robot is designed with five, four, and three degrees of freedom in the front, middle and rear legs, respectively, to permit it to mimic the different functions of cockroach legs. Pneumatic cylinders actuate each joint and provide opposing muscle-like forces to actuate the joints. Pulse-width modulation controls the actuators with the necessary smoothness and precision. A dynamic simulation has been developed to predict loads on the structure and the required joint torques
    Full-text · Conference Paper · May 1997
  • J. T. Watson · R. E. Ritzmann · S. N. Zill · A. J. Pollack

    No preview · Article ·