Huilin Li

The Rockefeller University, New York, New York, United States

Are you Huilin Li?

Claim your profile

Publications (65)661.56 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clostridium botulinum neurotoxin (BoNT) is released as a progenitor complex, in association with a non-toxic-non-hemagglutinin protein (NTNH) and other associated proteins. We have determined the crystal structure of M type Progenitor complex of botulinum neurotoxin E [PTC-E(M)], a heterodimer of BoNT and NTNH. The crystal structure reveals that the complex exists as a tight, interlocked heterodimer of BoNT and NTNH. The crystal structure explains the mechanism of molecular assembly of the complex and reveals several acidic clusters at the interface responsible for association at low acidic pH and disassociation at basic/neutral pH. The similarity of the general architecture between the PTC-E(M) and the previously determined PTC-A(M) strongly suggests that the progenitor M complexes of all botulinum serotypes may have similar molecular arrangement, although the neurotoxins apparently can take very different conformation when they are released from the M complex.
    Preview · Article · Dec 2015 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At the eukaryotic DNA replication fork, it is widely believed that the Cdc45-Mcm2-7-GINS (CMG) helicase is positioned in front to unwind DNA and that DNA polymerases trail behind the helicase. Here we used single-particle EM to directly image a Saccharomyces cerevisiae replisome. Contrary to expectations, the leading strand Pol ɛ is positioned ahead of CMG helicase, whereas Ctf4 and the lagging-strand polymerase (Pol) α-primase are behind the helicase. This unexpected architecture indicates that the leading-strand DNA travels a long distance before reaching Pol ɛ, first threading through the Mcm2-7 ring and then making a U-turn at the bottom and reaching Pol ɛ at the top of CMG. Our work reveals an unexpected configuration of the eukaryotic replisome, suggests possible reasons for this architecture and provides a basis for further structural and biochemical replisome studies.
    Full-text · Article · Nov 2015 · Nature Structural & Molecular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major question remaining in glycobiology is how a glycosyltransferase (GT) that retains the anomeric linkage of a sugar catalyzes the reaction. Xyloside [alpha]-1,3-xylosyltransferase (XXYLT1) is a retaining GT that regulates Notch receptor activation by adding xylose to the Notch extracellular domain. Here, using natural acceptor and donor substrates and active Mus musculus XXYLT1, we report a series of crystallographic snapshots along the reaction, including an unprecedented natural and competent Michaelis reaction complex for retaining enzymes. These structures strongly support the SNi-like reaction as the retaining mechanism for XXYLT1. Unexpectedly, the epidermal growth factor-like repeat acceptor substrate undergoes a large conformational change upon binding to the active site, providing a structural basis for substrate specificity. Our improved understanding of this retaining enzyme will accelerate the design of retaining GT inhibitors that can modulate Notch activity in pathological situation
    No preview · Article · Sep 2015 · Nature Chemical Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To initiate DNA replication, cells first load an MCM helicase double hexamer at origins in a reaction requiring ORC, Cdc6, and Cdt1, also called pre-replicative complex (pre-RC) assembly. The essential mechanistic role of Cdc6 ATP hydrolysis in this reaction is still incompletely understood. Here, we show that although Cdc6 ATP hydrolysis is essential to initiate DNA replication, it is not essential for MCM loading. Using purified proteins, an ATPase-defective Cdc6 mutant 'Cdc6-E224Q' promoted MCM loading on DNA. Cdc6-E224Q also promoted MCM binding at origins in vivo but cells remained blocked in G1-phase. If after loading MCM, Cdc6-E224Q was degraded, cells entered an apparently normal S-phase and replicated DNA, a phenotype seen with two additional Cdc6 ATPase-defective mutants. Cdc6 ATP hydrolysis is therefore required for Cdc6 disengagement from the pre-RC after helicase loading to advance subsequent steps in helicase activation in vivo.
    Full-text · Article · Aug 2015 · eLife Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer-membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate-binding site but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.
    No preview · Article · Jun 2015 · Nature Structural & Molecular Biology
  • Qingqing Lin · Tong Wang · Huilin Li · Erwin London
    [Show abstract] [Hide abstract]
    ABSTRACT: Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30-50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakage assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.
    No preview · Article · Apr 2015 · Journal of Membrane Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world's most devastating pathogens.
    Preview · Article · Mar 2015 · Proceedings of the National Academy of Sciences
  • Source
    Dataset: Nettles.SOM

    Full-text · Dataset · Nov 2014

  • No preview · Conference Paper · Nov 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2-7 (minichromosome maintenance proteins 2-7) double hexamer. During S phase, each Mcm2-7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC-Cdc6 function to recruit a single Cdt1-Mcm2-7 heptamer to replication origins prior to Cdt1 release and ORC-Cdc6-Mcm2-7 complex formation, but how the second Mcm2-7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC-Cdc6-Mcm2-7 complex and an ORC-Cdc6-Mcm2-7-Mcm2-7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2-7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2-7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.
    Full-text · Article · Oct 2014 · Genes & Development
  • Source

    Full-text · Dataset · Aug 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The regulated loading of the replicative helicase minichromosome maintenance proteins 2–7 (MCM2–7) onto replication origins is a prerequisite for replication fork establishment and genomic stability. Origin recognition complex (ORC), Cdc6, and Cdt1 assemble two MCM2–7 hexamers into one double hexamer around dsDNA. Although the MCM2–7 hexamer can adopt a ring shape with a gap between Mcm2 and Mcm5, it is unknown which Mcm interface functions as the DNA entry gate during regulated helicase loading. Here, we establish that the Saccharomyces cerevisiae MCM2–7 hexamer assumes a closed ring structure, suggesting that helicase loading requires active ring opening. Using a chemical biology approach, we show that ORC–Cdc6–Cdt1-dependent helicase loading occurs through a unique DNA entry gate comprised of the Mcm2 and Mcm5 subunits. Controlled inhibition of DNA insertion triggers ATPase-driven complex disassembly in vitro, while in vivo analysis establishes that Mcm2/Mcm5 gate opening is essential for both helicase loading onto chromatin and cell cycle progression. Importantly, we demonstrate that the MCM2–7 helicase becomes loaded onto DNA as a single hexamer during ORC/Cdc6/Cdt1/MCM2–7 complex formation prior to MCM2–7 double hexamer formation. Our study establishes the existence of a unique DNA entry gate for regulated helicase loading, revealing key mechanisms in helicase loading, which has important implications for helicase activation.
    Full-text · Article · Aug 2014 · Genes & Development
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phytochromes are multidomain photoswitches that drive light perception in plants and microorganisms by coupling photoreversible isomerization of their bilin chromophore to various signaling cascades. How changes in bilin conformation affect output by these photoreceptors remains poorly resolved and might include several species-specific routes. Here, we present detailed three-dimensional models of the photosensing module (PSM), and a picture of an entire dimeric photoreceptor through structural analysis of the Deinococcus radiodurans phytochrome BphP assembled with biliverdin (BV). A 1.16 angstrom-resolution crystal structure of the bilin-binding pocket as Pr illuminated the intricate network of bilin/protein/water interactions and confirmed the protonation and ZZZssa conformation of BV. Structural and spectroscopic comparisons with the photochemically-compromised D207A mutant revealed that substitutions of Asp207 allow inclusion of cyclic porphyrins in addition to BV. A crystal structure of the entire PSM showed a head-to-head, twisted dimeric arrangement with bowed helical spines and a hairpin protrusion connecting the cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) and phytochrome-specific (PHY) domains. A key conserved hairpin feature is its anti-parallel, two β-strand stem, which we show by mutagenesis to be critical for BphP photochemistry. Single-particle electron microscopic images of the full-length BphP dimer in the dark-adapted Pr and photoactivated Pfr states revealed a large-scale reorientation of the PHY domain relative to the GAF domain, which alters the position of the downstream histidine kinase output module. Together, our data support a model whereby bilin photoisomerization alters GAF/PHY domain interactions through conformational modification of the hairpin, which regulates signaling by impacting the relationship between sister output modules.
    Preview · Article · Jul 2014 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In addition to binding intracellular fatty acids, fatty-acid-binding proteins (FABPs) have recently been reported to also transport the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), arachidonic acid derivatives that function as neurotransmitters and mediate a diverse set of physiological and psychological processes. To understand how the endocannabinoids bind to FABPs, the crystal structures of FABP5 in complex with AEA, 2-AG and the inhibitor BMS-309403 were determined. These ligands are shown to interact primarily with the substrate-binding pocket via hydrophobic interactions as well as a common hydrogen bond to the Tyr131 residue. This work advances our understanding of FABP5–endocannabinoid interactions and may be useful for future efforts in the development of small-molecule inhibitors to raise endocannabinoid levels.
    Full-text · Article · Feb 2014 · Acta Crystallographica Section D Biological Crystallography
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our primary goal has been to understand how chromosomes are duplicated during the cell division cycle to ensure faithful inheritance of genetic information in eukaryotes. By initially investigating SV40 DNA replication, we reconstituted the entire process of DNA replication from the SV40 origin and in so doing discovered how the replication fork is assembled. Later, from studies on replication of DNA from chromosomal origins of DNA replication in eukaryotic cells, we discovered an ATP-dependent protein machine, the Origin Recognition Complex (ORC) that is required to form a pre-Replicative Complex (pre-RC) at all origins of DNA replication prior to S phase. The process of pre-RC assembly at origins of DNA replication licenses chromosomes for subsequent DNA replication during the S phase of the cell cycle. Pre-RC assembly has been reconstituted in vitro with purified proteins and structural studies have revealed a conserved mechanism of protein assembly on origin DNA. Activation of DNA replication requires multiple protein kinase signaling systems, including the Cyclin-Dependent Protein Kinase (CDK), the Cdc7-Dbf4 Protein Kinase (DDK) and the Mec1 (ATM/ATR) checkpoint kinase
    No preview · Article · Jan 2014 · The FASEB Journal
  • Gang Lin · Huilin Li · Carl F. Nathan

    No preview · Article · Dec 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium tuberculosis (Mtb) restrains immune responses well enough to escape eradication but elicits enough immunopathology to ensure its transmission. Here we provide evidence that this host-pathogen relationship is regulated in part by a cytosolic, membrane-associated protein with a unique structural fold, encoded by the Mtb gene rv0431. The protein acts by regulating the quantity of Mtb-derived membrane vesicles bearing Toll-like receptor 2 ligands, including the lipoproteins LpqH and SodC. We propose that rv0431 be named "vesiculogenesis and immune response regulator."
    Preview · Article · Nov 2013 · Proceedings of the National Academy of Sciences
  • Source
    Alberto Riera · Huilin Li · Christian Speck

    Full-text · Article · Aug 2013 · Cell cycle (Georgetown, Tex.)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In eukaryotes, the Cdt1-bound replicative helicase core MCM2-7 is loaded onto DNA by the ORC-Cdc6 ATPase to form a prereplicative complex (pre-RC) with an MCM2-7 double hexamer encircling DNA. Using purified components in the presence of ATP-γS, we have captured in vitro an intermediate in pre-RC assembly that contains a complex between the ORC-Cdc6 and Cdt1-MCM2-7 heteroheptamers called the OCCM. Cryo-EM studies of this 14-subunit complex reveal that the two separate heptameric complexes are engaged extensively, with the ORC-Cdc6 N-terminal AAA+ domains latching onto the C-terminal AAA+ motor domains of the MCM2-7 hexamer. The conformation of ORC-Cdc6 undergoes a concerted change into a right-handed spiral with helical symmetry that is identical to that of the DNA double helix. The resulting ORC-Cdc6 helicase loader shows a notable structural similarity to the replication factor C clamp loader, suggesting a conserved mechanism of action.
    Full-text · Article · Jul 2013 · Nature Structural & Molecular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteasomes are ATP-dependent protein degradation machines present in all archaea and eukaryotes, and found in several bacterial species of the order Actinomycetales. Mycobacterium tuberculosis (Mtb), an Actinomycete pathogenic to humans, requires proteasome function to cause disease. In this chapter, we describe what is currently understood about the biochemistry of the Mtb proteasome and its role in virulence. The characterization of the Mtb proteasome has led to the discovery that proteins can be targeted for degradation by a small protein modifier in bacteria as they are in eukaryotes. Furthermore, the understanding of proteasome function in Mtb has helped reveal new insight into how the host battles infections.
    No preview · Article · Mar 2013 · Sub-cellular biochemistry

Publication Stats

3k Citations
661.56 Total Impact Points

Institutions

  • 2015
    • The Rockefeller University
      New York, New York, United States
  • 2008-2015
    • Stony Brook University
      • Department of Biochemistry and Cell Biology
      Stony Brook, New York, United States
    • Cold Spring Harbor Laboratory
      Cold Spring Harbor, New York, United States
  • 2004-2015
    • Brookhaven National Laboratory
      • Biology Department
      Брукхейвен, New York, United States
  • 2007
    • Lehigh University
      • Department of Chemistry
      Bethlehem, Pennsylvania, United States
    • Duke University Medical Center
      Durham, North Carolina, United States
  • 2002
    • Brandeis University
      • Department of Biology
      Волтам, Massachusetts, United States
  • 2001
    • Lawrence Berkeley National Laboratory
      • Life Sciences Division
      Berkeley, CA, United States