Gregory J del Zoppo

University of Washington Seattle, Seattle, Washington, United States

Are you Gregory J del Zoppo?

Claim your profile

Publications (182)1345.5 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During focal cerebral ischemia, the degradation of microvessel basal lamina matrix occurs acutely and is associated with edema formation and microhemorrhage. These events have been attributed to matrix metalloproteinases (MMPs). However, both known protease generation and ligand specificities suggest other participants. Using cerebral tissues from a non-human primate focal ischemia model and primary murine brain endothelial cells, astrocytes, and microglia in culture, the effects of active cathepsin L have been defined. Within 2 hours of ischemia onset cathepsin L, but not cathepsin B, activity appears in the ischemic core, around microvessels, within regions of neuron injury and cathepsin L expression. In in vitro studies, cathepsin L activity is generated during experimental ischemia in microglia, but not astrocytes or endothelial cells. In the acidic ischemic core, cathepsin L release is significantly increased with time. A novel ex vivo assay showed that cathepsin L released from microglia during ischemia degrades microvessel matrix, and interacts with MMP activity. Hence, the loss of microvessel matrix during ischemia is explained by microglial cathepsin L release in the acidic core during injury evolution. The roles of cathepsin L and its interactions with specific MMP activities during ischemia are relevant to strategies to reduce microvessel injury and hemorrhage.Journal of Cerebral Blood Flow & Metabolism advance online publication, 22 July 2015; doi:10.1038/jcbfm.2015.170.
    Full-text · Article · Jul 2015 · Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  • Source
    Brian Thomas Hawkins · Yu-Huan Gu · Yoshikane Izawa · Gregory John Del Zoppo
    [Show abstract] [Hide abstract]
    ABSTRACT: Atrial fibrillation (AF) increases the risk and severity of thromboembolic stroke. Generally, antithrombotic agents increase the hemorrhagic risk of thromboembolic stroke. However, significant reductions in thromboembolism and intracerebral hemorrhage have been shown with the antithrombin dabigatran compared with warfarin. As thrombin has been implicated in microvessel injury during cerebral ischemia, we hypothesized that dabigatran decreases the risk of intracerebral hemorrhage by direct inhibition of the thrombin-mediated increase in cerebral endothelial cell permeability. Primary murine brain endothelial cells (mBECs) were exposed to murine thrombin before measuring permeability to 4-kDa fluorescein isothiocyanate-dextran. Thrombin increased mBEC permeability in a concentration-dependent manner, without significant endothelial cell death. Pretreatment of mBECs with dabigatran completely abrogated the effect of thrombin on permeability. Neither the expressions of the endothelial cell β1-integrins nor the tight junction protein claudin-5 were affected by thrombin exposure. Oxygen-glucose deprivation (OGD) also increased permeability; this effect was abrogated by treatment with dabigatran, as was the additive effect of thrombin and OGD on permeability. Taken together, these results indicate that dabigatran could contribute to a lower risk of intracerebral hemorrhage during embolism-associated ischemia from AF by protection of the microvessel permeability barrier from local thrombin challenge.Journal of Cerebral Blood Flow & Metabolism advance online publication, 11 February 2015; doi:10.1038/jcbfm.2015.9.
    Full-text · Article · Feb 2015 · Journal of Cerebral Blood Flow & Metabolism
  • Joanna M. Wardlaw · Veronica Murray · Eivind Berge · Gregory J. del Zoppo

    No preview · Article · Nov 2014 · Stroke
  • Joanna M Wardlaw · Veronica Murray · Eivind Berge · Gregory J Del Zoppo

    No preview · Article · Aug 2014 · The Lancet
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Alteplase is effective for treatment of acute ischaemic stroke but debate continues about its use after longer times since stroke onset, in older patients, and among patients who have had the least or most severe strokes. We assessed the role of these factors in affecting good stroke outcome in patients given alteplase. Methods We did a pre-specified meta-analysis of individual patient data from 6756 patients in nine randomised trials comparing alteplase with placebo or open control. We included all completed randomised phase 3 trials of intravenous alteplase for treatment of acute ischaemic stroke for which data were available. Retrospective checks confirmed that no eligible trials had been omitted. We defined a good stroke outcome as no significant disability at 3–6 months, defined by a modified Rankin Score of 0 or 1. Additional outcomes included symptomatic intracranial haemorrhage (defined by type 2 parenchymal haemorrhage within 7 days and, separately, by the SITS-MOST definition of parenchymal type 2 haemorrhage within 36 h), fatal intracranial haemorrhage within 7 days, and 90-day mortality. Findings Alteplase increased the odds of a good stroke outcome, with earlier treatment associated with bigger proportional benefit. Treatment within 3·0 h resulted in a good outcome for 259 (32·9%) of 787 patients who received alteplase versus 176 (23·1%) of 762 who received control (OR 1·75, 95% CI 1·35–2·27); delay of greater than 3·0 h, up to 4·5 h, resulted in good outcome for 485 (35·3%) of 1375 versus 432 (30·1%) of 1437 (OR 1·26, 95% CI 1·05–1·51); and delay of more than 4·5 h resulted in good outcome for 401 (32·6%) of 1229 versus 357 (30·6%) of 1166 (OR 1·15, 95% CI 0·95–1·40). Proportional treatment benefits were similar irrespective of age or stroke severity. Alteplase significantly increased the odds of symptomatic intracranial haemorrhage (type 2 parenchymal haemorrhage definition 231 [6·8%] of 3391 vs 44 [1·3%] of 3365, OR 5·55, 95% CI 4·01–7·70, p<0·0001; SITS-MOST definition 124 [3·7%] vs 19 [0·6%], OR 6·67, 95% CI 4·11–10·84, p<0·0001) and of fatal intracranial haemorrhage within 7 days (91 [2·7%] vs 13 [0·4%]; OR 7·14, 95% CI 3·98–12·79, p<0·0001). The relative increase in fatal intracranial haemorrhage from alteplase was similar irrespective of treatment delay, age, or stroke severity, but the absolute excess risk attributable to alteplase was bigger among patients who had more severe strokes. There was no excess in other early causes of death and no significant effect on later causes of death. Consequently, mortality at 90 days was 608 (17·9%) in the alteplase group versus 556 (16·5%) in the control group (hazard ratio 1·11, 95% CI 0·99–1·25, p=0·07). Taken together, therefore, despite an average absolute increased risk of early death from intracranial haemorrhage of about 2%, by 3–6 months this risk was offset by an average absolute increase in disability-free survival of about 10% for patients treated within 3·0 h and about 5% for patients treated after 3·0 h, up to 4·5 h. Interpretation Irrespective of age or stroke severity, and despite an increased risk of fatal intracranial haemorrhage during the first few days after treatment, alteplase significantly improves the overall odds of a good stroke outcome when delivered within 4·5 h of stroke onset, with earlier treatment associated with bigger proportional benefits. Funding UK Medical Research Council, British Heart Foundation, University of Glasgow, University of Edinburgh.
    Full-text · Article · Aug 2014 · The Lancet
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malignant infarction is characterized by the formation of cerebral edema, and medical treatment is limited. Preclinical data suggest that glyburide, an inhibitor of SUR1-TRPM4, is effective in preventing edema. We previously reported feasibility of the GAMES-Pilot study, a two-center prospective, open label, phase IIa trial of 10 subjects at high risk for malignant infarction based on diffusion weighted imaging (DWI) threshold of 82 cm(3) treated with RP-1127 (glyburide for injection). In this secondary analysis, we tested the hypothesis that RP-1127 may be efficacious in preventing poor outcome when compared to controls. Controls suffering large hemispheric infarction were obtained from the EPITHET and MMI-MRI studies. We first screened subjects for controls with the same DWI threshold used for enrollment into GAMES-Pilot, 82 cm(3). Next, to address imbalances, we applied a weighted Euclidean matching. Ninety day mRS 0-4, rate of decompressive craniectomy, and mortality were the primary clinical outcomes of interest. The mean age of the GAMES cohort was 51 years and initial DWI volume was 102 ± 23 cm(3). After Euclidean matching, GAMES subjects showed similar NIHSS, higher DWI volume, younger age and had mRS 0-4-90 % versus 50 % in controls p = 0.049; with a similar trend in mRS 0-3 (40 vs. 25 %; p = 0.43) and trend toward lower mortality (10 vs. 35 %; p = 0.21). In this pilot study, RP-1127-treated subjects showed better clinical outcomes when compared to historical controls. An adequately powered and randomized phase II trial of patients at risk for malignant infarction is needed to evaluate the potential efficacy of RP-1127.
    No preview · Article · Mar 2014 · Neurocritical Care
  • Alfonso Ciccone · Gregory J Del Zoppo
    [Show abstract] [Hide abstract]
    ABSTRACT: The perceived advantages of endovascular treatment for acute ischemic stroke in terms of recanalization, the multimodal and targeted approaches, and perhaps the more permissive rules on devices than on medications for their licensing favored the assumption that endovascular treatment is superior to intravenous thrombolysis for acute treatment of ischemic stroke, and its adoption in more advanced stroke centers. However, this assumption has been questioned by recent clinical trial experience showing that endovascular treatment is not superior to intravenous thrombolysis. The new evidence has changed the perception and the importance of conducting randomized trials in this area. This summary examines the background and outcomes of the latest experience with endovascular techniques in acute stroke treatment based on historical data. The new challenge is how to study the latest generation of devices called stent retrievers, which are faster in recanalizing and easier to use, in selected patients with acute ischemic stroke. In the meantime, the available evidence does not provide support for the use of endovascular treatment of acute ischemic stroke in clinical practice.
    No preview · Article · Jan 2014 · Current Neurology and Neuroscience Reports
  • Gregory J Del Zoppo · Yoshikane Izawa · Brian T Hawkins
    [Show abstract] [Hide abstract]
    ABSTRACT: Modulation of coagulation has been successfully applied to ischemic disorders of the central nervous system (CNS). Some components of the coagulation system have been identified in the CNS, yet with limited exception their functions have not been clearly defined. Little is known about how events within the cerebral tissues affect hemostasis. Nonetheless, the interaction between cerebral cells and vascular hemostasis and the possibility that endogenous coagulation factors can participate in functions within the neurovascular unit provide intriguing possibilities for deeper insight into CNS functions and the potential for treatment of CNS injuries. Here, we consider the expression of coagulation factors in the CNS, the coagulopathy associated with focal cerebral ischemia (and its relationship to hemorrhagic transformation), the use of recombinant tissue plasminogen activator (rt-PA) in ischemic stroke and its study in animal models, the impact of rt-PA on neuron and CNS structure and function, and matrix protease generation and matrix degradation and hemostasis. Interwoven among these topics is evidence for interactions of coagulation factors with and within the CNS. How activation of hemostasis occurs in the cerebral tissues and how the brain responds are difficult questions that offer many research possibilities.
    No preview · Article · Nov 2013 · Seminars in Thrombosis and Hemostasis
  • [Show abstract] [Hide abstract]
    ABSTRACT: The sulfonylurea receptor 1 (Sur1)-transient receptor potential 4 (Trpm4) channel is an important molecular element in focal cerebral ischemia. The channel is upregulated in all cells of the neurovascular unit following ischemia, and is linked to microvascular dysfunction that manifests as edema formation and secondary hemorrhage, which cause brain swelling. Activation of the channel is a major molecular mechanism of cytotoxic edema and "accidental necrotic cell death." Blockade of Sur1 using glibenclamide has been studied in different types of rat models of stroke: (i) in conventional non-lethal models (thromboembolic, 1-2 h temporary, or permanent middle cerebral artery occlusion), glibenclamide reduces brain swelling and infarct volume and improves neurological function; (ii) in lethal models of malignant cerebral edema, glibenclamide reduces edema, brain swelling, and mortality; (iii) in models with rtPA, glibenclamide reduces swelling, hemorrhagic transformation, and death. Retrospective studies of diabetic patients who present with stroke have shown that those whose diabetes is managed with a sulfonylurea drug and who are maintained on the sulfonylurea drug during hospitalization for stroke have better outcomes at discharge and are less likely to suffer hemorrhagic transformation. Here, we provide a comprehensive review of the basic science, preclinical experiments, and retrospective clinical studies on glibenclamide in focal cerebral ischemia and stroke. We also compare the preclinical work in stroke models to the updated recommendations of the Stroke Therapy Academic Industry Roundtable (STAIR). The findings reviewed here provide a strong foundation for a translational research program to study glibenclamide in patients with ischemic stroke.
    No preview · Article · Oct 2013 · Neurocritical Care
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rationale Thrombolysis with intravenous alteplase is both effective and safe when administered to particular types of patient within 45 hours of having an ischemic stroke. However, the extent to which effects might vary in different types of patient is uncertain. Aims and Design We describe the protocol for an updated individual patient data meta-analysis of trials of intravenous alteplase, including results from the recently reported third International Stroke Trial, in which a wide range of patients enrolled up to six-hours after stroke onset were randomized to alteplase vs. control. Study Outcomes This protocol will specify the primary outcome for efficacy, specified prior to knowledge of the results from the third International Stroke Trial, as the proportion of patients having a favorable' stroke outcome, defined by modified Rankin Score 01 at final follow-up at three- to six-months. The primary analysis will be to estimate the extent to which the known benefit of alteplase on modified Rankin Score 01 diminishes with treatment delay, and the extent to which it is independently modified by age and stroke severity. Key secondary outcomes include effect of alteplase on death within 90 days; analyses of modified Rankin Score using ordinal, rather than dichotomous, methods; and effects of alteplase on symptomatic intracranial hemorrhage, fatal intracranial hemorrhage, symptomatic ischemic brain edema and early edema, effacement and/or midline shift. Discussion This collaborative meta-analysis of individual participant data from all randomized trials of intravenous alteplase vs. control will demonstrate how the known benefits of alteplase on ischemic stroke outcome vary across different types of patient.
    No preview · Article · Jun 2013 · International Journal of Stroke

  • No preview · Article · May 2013 · Anesthesiology
  • Gregory J Del Zoppo
    [Show abstract] [Hide abstract]
    ABSTRACT: Appropriate acute treatment with plasminogen activators (PAs) can significantly increase the probability of minimal or no disability in selected ischemic stroke patients. There is a great deal of evidence showing that intravenous recombinant tissue PAs (rt-PA) infusion accomplishes this goal, recanalization with other PAs has also been demonstrated in the development of this treatment. Recanalization of symptomatic, documented carotid or vertebrobasilar arterial territory occlusions have also been achieved by local intra-arterial PA delivery, although only a single prospective double-blinded randomized placebo-controlled study has been reported. The increase in intracerebral hemorrhage with these agents by either delivery approach underscores the need for careful patient selection, dose-appropriate safety and efficacy, proper clinical trial design, and an understanding of the evolution of cerebral tissue injury due to focal ischemia. Principles underlying the evolution of focal ischemia have been expanded by experience with acute PA intervention. Several questions remain open that concern the manner in which PAs can be applied acutely in ischemic stroke and how injury development can be limited.
    No preview · Article · Mar 2013 · Seminars in Thrombosis and Hemostasis
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blood-brain barrier (BBB) dysfunction in acute liver failure (ALF) results in increased BBB permeability that often precludes the patients from obtaining a life-saving liver transplantation. It remains controversial whether matrix metalloproteinase-9 (MMP-9) from the injured liver contributes to the deregulation of BBB function in ALF. We selectively upregulated a physiologic inhibitor of MMP-9 (TIMP-1) with a single intracerebroventricular injection of TIMP-1 cDNA plasmids at 48 and 72 hours, or with pegylated-TIMP-1 protein. Acute liver failure was induced with tumor necrosis factor-α and D-(+)-galactosamine in mice. Permeability of BBB was assessed with sodium fluorescein (NaF) extravasation. We found a significant increase in TIMP-1 within the central nervous system (CNS) after the administration of TIMP-1 cDNA plasmids and that increased TIMP-1 within the CNS resulted in an attenuation of BBB permeability, a reduction in activation of epidermal growth factor receptor and p38 mitogen-activated protein kinase signals, and a restoration of the tight junction protein occludin in mice with experimental ALF. Pegylated TIMP-1 provided similar protection against BBB permeability in mice with ALF. Our results provided a proof of principle that MMP-9 contributes to the BBB dysfunction in ALF and suggests a potential therapeutic role of TIMP-1 in ALF.Journal of Cerebral Blood Flow & Metabolism advance online publication, 27 March 2013; doi:10.1038/jcbfm.2013.45.
    Full-text · Article · Mar 2013 · Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  • Source
    Hannu Kalimo · Gregory J Del Zoppo · Anders Paetau · Perttu J Lindsberg

    Full-text · Article · Mar 2013 · Acta Neuropathologica
  • Brian T Hawkins · Yu-Huan Gu · Yoshikane Izawa · Gregory J Del Zoppo
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral edema is a serious complication of ischemic brain injury. Cerebral edema includes accumulation of extracellular fluid due to leakage of the brain's microvessel permeability barrier, and swelling of astrocytes as they absorb water from the extracellular space. Expression of matrix adhesion receptors in brain microvessels decreases in ischemic stroke; this contributes to increased microvessel permeability and detachment of astrocytes from the extracellular matrix (ECM). Since loss of the astrocyte adhesion receptor dystroglycan has been associated with disrupted polarization of ion and water channels, we hypothesized that adhesion of astrocytes to the ECM contributes to regulation of water uptake, and that disruption of matrix adhesion impairs the ability of astrocytes to direct water transport. To test this hypothesis, the capacity of astrocytes to take up water was measured using a fluorescence self-quenching assay under both oxygen/glucose deprivation (OGD) and direct antibody-mediated blockade of α-dystroglycan. Both conditions decreased the rate of water uptake. Moreover, inhibiting proteolytic cleavage of dystroglycan that occurs in OGD abrogated the effect of OGD, but not direct blockade of α-dystroglycan, indicating that interfering with dystroglycan-matrix binding itself affects water uptake. Activation of extracellular signal-related kinase (ERK) by OGD was dependent on α-dystroglycan binding, and inhibition of ERK activity with U0126 abrogated the loss of water uptake following OGD. These studies demonstrate for the first time that water uptake in astrocytes is regulated by dystroglycan-dependent signaling associated with matrix adhesion. This presents a novel potential approach to the treatment of cerebral edema.
    No preview · Article · Feb 2013 · Brain research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The brain is in many ways an immunologically and pharmacologically privileged site. The blood-brain barrier (BBB) of the cerebrovascular endothelium and its participation in the complex structure of the neurovascular unit (NVU) restrict access of immune cells and immune mediators to the central nervous system (CNS). In pathologic conditions, very well-organized immunologic responses can develop within the CNS, raising important questions about the real nature and the intrinsic and extrinsic regulation of this immune privilege. We assess the interactions of immune cells and immune mediators with the BBB and NVU in neurologic disease, cerebrovascular disease, and intracerebral tumors. The goals of this review are to outline key scientific advances and the status of the science central to both the neuroinflammation and CNS barriers fields, and highlight the opportunities and priorities in advancing brain barriers research in the context of the larger immunology and neuroscience disciplines. This review article was developed from reports presented at the 2011 Annual Blood-Brain Barrier Consortium Meeting.Journal of Cerebral Blood Flow & Metabolism advance online publication, 17 October 2012; doi:10.1038/jcbfm.2012.153.
    Full-text · Article · Oct 2012 · Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  • Source
    Gregory J Del Zoppo
    [Show abstract] [Hide abstract]
    ABSTRACT: The Nobel laureate Max Delbrück often said that it is the crossover between disciplines where advances are possible in science. This certainly has been true for our understanding of the vascular biology of the central nervous system in the setting of ischemic stroke. The ability to cross the boundaries of hemostasis, neurology, hematology, and neuroscience has facilitated our research direction to define the relation of the microvasculature to neuron function. Work begun with the clinical scientific exploration of the contributions of arterial thrombosis to the acute injury processes initiated by focal cerebral ischemia has led to an increased understanding of the effects of ischemia on microvessel integrity.
    Preview · Article · Oct 2012 · Stroke
  • Source
    Gregory J Del Zoppo
    [Show abstract] [Hide abstract]
    ABSTRACT: With the demonstration that acute recanalization of obstructed symptomatic cerebral arteries during ischemic stroke can result in substantial improvement in clinical outcome, the variability in clinical responses, and in hemorrhagic transformation, requires attention. This short review addresses the effect of aging and amyloid deposition disease on microvessel integrity, interactions within the neurovascular unit, cerebral tissue susceptibility to ischemic injury, and postischemic inflammation, and ultimately on the outcomes and safety of acute recanalization during ischemic stroke. Microvessels and neighboring neurons respond simultaneously to focal ischemia. The cellular components and matrix barriers of the neurovascular unit all respond to ischemia; however, their coordinate interactions are not understood. Furthermore, there is little known about the cell-cell and cell-matrix interactions within the unit, or about the effect of β-amyloid on microvessel responses during ischemia. These considerations indicate the need for a coordinated research effort to understand the origins of the variability in recanalization outcome.
    Preview · Article · Sep 2012 · Annals of the New York Academy of Sciences
  • Gregory J Del Zoppo · Andrei V Alexandrov

    No preview · Article · Sep 2012 · Annals of the New York Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant tissue plasminogen activator (rt-PA, alteplase) improved functional outcome in patients treated soon after acute ischaemic stroke in randomised trials, but licensing is restrictive and use varies widely. The IST-3 trial adds substantial new data. We therefore assessed all the evidence from randomised trials for rt-PA in acute ischaemic stroke in an updated systematic review and meta-analysis. We searched for randomised trials of intravenous rt-PA versus control given within 6 h of onset of acute ischaemic stroke up to March 30, 2012. We estimated summary odds ratios (ORs) and 95% CI in the primary analysis for prespecified outcomes within 7 days and at the final follow-up of all patients treated up to 6 h after stroke. In up to 12 trials (7012 patients), rt-PA given within 6 h of stroke significantly increased the odds of being alive and independent (modified Rankin Scale, mRS 0-2) at final follow-up (1611/3483 [46·3%] vs 1434/3404 [42·1%], OR 1·17, 95% CI 1·06-1·29; p=0·001), absolute increase of 42 (19-66) per 1000 people treated, and favourable outcome (mRS 0-1) absolute increase of 55 (95% CI 33-77) per 1000. The benefit of rt-PA was greatest in patients treated within 3 h (mRS 0-2, 365/896 [40·7%] vs 280/883 [31·7%], 1·53, 1·26-1·86, p<0·0001), absolute benefit of 90 (46-135) per 1000 people treated, and mRS 0-1 (283/896 [31·6%] vs 202/883 [22·9%], 1·61, 1·30-1·90; p<0·0001), absolute benefit 87 (46-128) per 1000 treated. Numbers of deaths within 7 days were increased (250/2807 [8·9%] vs 174/2728 [6·4%], 1·44, 1·18-1·76; p=0·0003), but by final follow-up the excess was no longer significant (679/3548 [19·1%] vs 640/3464 [18·5%], 1·06, 0·94-1·20; p=0·33). Symptomatic intracranial haemorrhage (272/3548 [7·7%] vs 63/3463 [1·8%], 3·72, 2·98-4·64; p<0·0001) accounted for most of the early excess deaths. Patients older than 80 years achieved similar benefit to those aged 80 years or younger, particularly when treated early. The evidence indicates that intravenous rt-PA increased the proportion of patients who were alive with favourable outcome and alive and independent at final follow-up. The data strengthen previous evidence to treat patients as early as possible after acute ischaemic stroke, although some patients might benefit up to 6 h after stroke. UK Medical Research Council, Stroke Association, University of Edinburgh, National Health Service Health Technology Assessment Programme, Swedish Heart-Lung Fund, AFA Insurances Stockholm (Arbetsmarknadens Partners Forsakringsbolag), Karolinska Institute, Marianne and Marcus Wallenberg Foundation, Research Council of Norway, Oslo University Hospital.
    Full-text · Article · May 2012 · The Lancet

Publication Stats

18k Citations
1,345.50 Total Impact Points


  • 2008-2015
    • University of Washington Seattle
      • • Department of Neurology
      • • Department of Medicine
      Seattle, Washington, United States
  • 2013
    • University of California, San Francisco
      • Department of Anesthesia and Perioperative Care
      San Francisco, California, United States
  • 1988-2012
    • The Scripps Research Institute
      • Department of Molecular and Experimental Medicine
      La Jolla, California, United States
  • 2003-2009
    • The University of Edinburgh
      • Division of Clinical Neurosciences
      Edinburgh, SCT, United Kingdom
    • University of Massachusetts Amherst
      Amherst Center, Massachusetts, United States
  • 2007
    • Osaka City University
      Ōsaka, Ōsaka, Japan
  • 2001
    • American Heart Association
      Dallas, Texas, United States
  • 1999
    • Ludwig-Maximilians-University of Munich
      • Department of Neurology
      München, Bavaria, Germany
  • 1997
    • University of the Witwatersrand
      • Department of Physiotherapy
      Johannesburg, Gauteng, South Africa
  • 1996
    • Universität des Saarlandes
      Saarbrücken, Saarland, Germany