G. Olofsson

Chalmers University of Technology, Goeteborg, Västra Götaland, Sweden

Are you G. Olofsson?

Claim your profile

Publications (212)549.59 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have measured the linear polarization of hard X-ray emission from the Crab in a previously unexplored energy interval, 20–120 keV. The introduction of two new observational parameters, the polarization fraction and angle stands to disentangle geometrical and physical effects, thereby providing information on the pulsar wind geometry and magnetic field environment. Measurements are conducted using the PoGOLite Pathfinder – a balloon-borne polarimeter. Polarization is determined by measuring the azimuthal Compton scattering angle of incident X-rays in an array of plastic scintillators housed in an anticoincidence well. The polarimetric response has been characterized prior to flight using both polarized and unpolarized calibration sources. We address possible systematic effects through observations of a background field. The measured polarization fraction for the integrated Crab light curve is $18.4^{+9.8}_{-10.6}$ per cent, corresponding to an upper limit (99 per cent credibility) of 42.4 per cent, for a polarization angle of (149.2 ± 16.0)°.
    Full-text · Article · Nov 2015 · Monthly Notices of the Royal Astronomical Society Letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present far-infrared and submillimeter maps from the Herschel Space Observatory and the James Clerk Maxwell Telescope of the debris disk host star AU Microscopii. Disk emission is detected at 70, 160, 250, 350, 450, 500 and 850 micron. The disk is resolved at 70, 160 and 450 micron. In addition to the planetesimal belt, we detect thermal emission from AU Mic's halo for the first time. In contrast to the scattered light images, no asymmetries are evident in the disk. The fractional luminosity of the disk is $3.9 \times 10^{-4}$ and its mm-grain dust mass is 0.01 MEarth (+/- 20%). We create a simple spatial model that reconciles the disk SED as a blackbody of 53 +/- 2 K (a composite of 39 and 50 K components) and the presence of small (non-blackbody) grains which populate the extended halo. The best fit model is consistent with the "birth ring" model explored in earlier works, i.e., an edge-on dust belt extending from 8.8-40 AU, but with an additional halo component with an $r^{-1.5}$ surface density profile extending to the limits of sensitivity (140 AU). We confirm that AU Mic does not exert enough radiation force to blow out grains. For stellar mass loss rates of 10-100x solar, compact (zero porosity) grains can only be removed if they are very small, consistently with previous work, if the porosity is 0.9, then grains approaching 0.1 micron can be removed via corpuscular forces (i.e., the stellar wind).
    No preview · Article · Sep 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the 50 years since the advent of X-ray astronomy there have been many scientific advances due to the development of new experimental techniques for detecting and characterising X-rays. Observations of X-ray polarisation have, however, not undergone a similar development. This is a shortcoming since a plethora of open questions related to the nature of X-ray sources could be resolved through measurements of the linear polarisation of emitted X-rays. The PoGOLite Pathfinder is a balloon-borne hard X-ray polarimeter operating in the 25 - 240 keV energy band from a stabilised observation platform. Polarisation is determined using coincident energy deposits in a segmented array of plastic scintillators surrounded by a BGO anticoincidence system and a polyethylene neutron shield. The PoGOLite Pathfinder was launched from the SSC Esrange Space Centre in July 2013. A near-circumpolar flight was achieved with a duration of approximately two weeks. The flight performance of the Pathfinder design is discussed for the three Crab observations conducted. The signal-to-background ratio for the observations is shown to be 0.25$\pm$0.03 and the Minimum Detectable Polarisation (99% C.L.) is (28.4$\pm$2.2)%. A strategy for the continuation of the PoGOLite programme is outlined based on experience gained during the 2013 maiden flight.
    No preview · Article · Aug 2015 · Experimental Astronomy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this article, we describe the MIRI Imager module (MIRIM), which provides broad-band imaging in the 5 - 27 microns wavelength range for the James Webb Space Telescope. The imager has a 0"11 pixel scale and a total unobstructed view of 74"x113". The remainder of its nominal 113"x113" field is occupied by the coronagraphs and the low resolution spectrometer. We present the instrument optical and mechanical design. We show that the test data, as measured during the test campaigns undertaken at CEA-Saclay, at the Rutherford Appleton Laboratory, and at the NASA Goddard Space Flight Center, indicate that the instrument complies with its design requirements and goals. We also discuss the operational requirements (multiple dithers and exposures) needed for optimal scientific utilization of the MIRIM.
    Full-text · Article · Aug 2015 · Publications of the Astronomical Society of the Pacific
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28.5 microns. MIRI has, within a single 'package', four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R ~ 100) spectroscopy, and medium-resolving power (R ~ 1500 to 3500) integral field spectroscopy. An associated cooler system maintains MIRI at its operating temperature of < 6.7 K. This paper describes the driving principles behind the design of MIRI, the primary design parameters, and their realization in terms of the 'as-built' instrument. It also describes the test program that led to delivery of the tested and calibrated Flight Model to NASA in 2012, and the confirmation after delivery of the key interface requirements.
    Full-text · Article · Aug 2015 · Publications of the Astronomical Society of the Pacific
  • [Show abstract] [Hide abstract]
    ABSTRACT: We aim at determining the spatial distribution of the gas and dust in star-forming regions and address their relative abundances in quantitative terms. We also examine the dust opacity exponent beta for spatial and/or temporal variations. Using mapping observations of the very dense rho Oph A core, we examined standard 1D and non-standard 3D methods to analyse data of far-infrared and submillimeter (submm) continuum radiation. The resulting dust surface density distribution can be compared to that of the gas. The latter was derived from the analysis of accompanying molecular line emission, observed with Herschel from space and with APEX from the ground. As a gas tracer we used N2H+, which is believed to be much less sensitive to freeze-out than CO and its isotopologues. Radiative transfer modelling of the N2H+(J=3-2) and (J=6-5) lines with their hyperfine structure explicitly taken into account provides solutions for the spatial distribution of the column density N(H2), hence the surface density distribution of the gas. The gas-to-dust mass ratio is varying across the map, with very low values in the central regions around the core SM 1. The global average, =88, is not far from the canonical value of 100, however. In rho Oph A, the exponent beta of the power-law description for the dust opacity exhibits a clear dependence on time, with high values of 2 for the envelope-dominated emission in starless Class -1 sources to low values close to 0 for the disk-dominated emission in Class III objects. beta assumes intermediate values for evolutionary classes in between. Since beta is primarily controlled by grain size, grain growth mostly occurs in circumstellar disks. The spatial segregation of gas and dust, seen in projection toward the core centre, probably implies that, like C18O, also N2H+ is frozen onto the grains.
    No preview · Article · Apr 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AIMS: The object W Aql is an asymptotic giant branch (AGB) star with a faint companion. By determining more carefully the properties of the companion, we hope to better constrain the properties of the AGB star. METHODS: We present new spectral observations of the binary star W Aql at minimum and maximum brightness and new photometric observations of W Aql at minimum brightness. RESULTS: The composite spectrum near minimum light is predominantly from the companion at wavelengths $\lambda$ < 6000 $\AA$. This spectrum can be classified as F8 to G0, and the brightness of the companion is that of a dwarf star. Therefore, it can be concluded that the companion is a main sequence star. From this, we are able to constrain the mass of the AGB component to 1.04 - 3 $M_\odot$ and the mass of the W Aql system to 2.1 - 4.1 $M_\odot$ . Our photometric results are broadly consistent with this classification and suggest that the main sequence component suffers from approximately 2 mag of extinction in the V band primarily due to the dust surrounding the AGB component.
    Full-text · Article · Jan 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: The 440 Myr old main-sequence A-star Fomalhaut is surrounded by an eccentric debris belt with sharp edges. Such a morphology is usually attributed to planetary perturbations, but the orbit of the only planetary candidate detected so far, Fomalhaut b, is too eccentric to efficiently shape the belt. Alternative models that could account for the morphology without invoking a planet are stellar encounters and gas-dust interactions. Aims: We aim to test the possibility of gas-dust interactions as the origin of the observed morphology by putting upper limits on the total gas content of the Fomalhaut belt. Methods: We derive upper limits on the CII 158 $\mu$m and OI 63 $\mu$m emission by using non-detections from the PACS instrument onboard the Herschel Space Observatory. Line fluxes are converted into total gas mass using the non-LTE code RADEX. We consider two different cases for the elemental abundances of the gas: solar abundances and abundances similar to those observed for the gas in the $\beta$ Pictoris debris disk. Results: The gas mass is shown to be below the millimetre dust mass by a factor of at least $\sim$3 (for solar abundances) respectively $\sim$300 (for $\beta$ Pic-like abundances). Conclusions: The lack of gas co-spatial with the dust implies that gas-dust interactions cannot efficiently shape the Fomalhaut debris belt. The morphology is therefore more likely due to a yet unseen planet (Fomalhaut c) or stellar encounters.
    Full-text · Article · Dec 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The precise mechanisms that provide the non-radiative energy for heating the chromosphere and the corona of the Sun and those of other stars constitute an active field of research. By studying stellar chromospheres one aims at identifying the relevant physical processes. Defining the permittable extent of the parameter space can also serve as a template for the Sun-as-a-star. Earlier observations with Herschel and APEX have revealed the temperature minimum of alpha Cen, but these were unable to spatially resolve the binary into individual components. With the data reported here, we aim at remedying this shortcoming. Furthermore, these earlier data were limited to the wavelength region between 100 and 870mu. In the present context, we intend to extend the spectral mapping to longer wavelengths, where the contrast between stellar photospheric and chromospheric emission becomes increasingly evident. ALMA is particularly suited to point sources, such as unresolved stars. ALMA provides the means to achieve our objectives with both its high sensitivity of the collecting area for the detection of weak signals and the high spatial resolving power of its adaptable interferometer for imaging close multiple stars. This is the first detection of main-sequence stars at a wavelength of 3mm. Furthermore, the individual components of the binary alpha CenAB are clearly detected and spatially well resolved at all ALMA wavelengths. The high S/N of these data permit accurate determination of their relative flux ratios. The previously obtained flux ratio of 0.44, which was based on measurements in the optical and at 70mu, is consistent with the present ALMA results, albeit with a large error bar. Given the distinct difference in their cyclic activity, the similarity of their submm SEDs appears surprising.
    Full-text · Article · Dec 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In our series of papers presenting the Herschel imaging of evolved planetary nebulae, we present images of the dust distribution in the Helix nebula (NGC 7293). Images at 70, 160, 250, 350, and 500 micron were obtained with the PACS and SPIRE instruments on board the Herschel satellite. The broadband maps show the dust distribution over the main Helix nebula to be clumpy and predominantly present in the barrel wall. We determined the spectral energy distribution of the main nebula in a consistent way using Herschel, IRAS, and Planck flux values. The emissivity index of 0.99 +/- 0.09, in combination with the carbon rich molecular chemistry of the nebula, indicates that the dust consists mainly of amorphous carbon. The dust excess emission from the central star disk is detected at 70 micron and the flux measurement agree with previous measurement. We present the temperature and dust column density maps. The total dust mass across the Helix nebula (without its halo) is determined to be 0.0035 solar mass at a distance of 216 pc. The temperature map shows dust temperatures between 22 and 42 K, which is similar to the kinetic temperature of the molecular gas, strengthening the fact that the dust and gas co-exist in high density clumps. Archived images are used to compare the location of the dust emission in the far infrared (Herschel) with the ionized (GALEX, Hbeta) and molecular hydrogen component. The different emission components are consistent with the Helix consisting of a thick walled barrel-like structure inclined to the line of sight. The radiation field decreases rapidly through the barrel wall.
    Full-text · Article · Nov 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The HH54 shock is a Herbig-Haro object, located in the nearby Chamaeleon II cloud. Observed CO line profiles are due to a complex distribution in density, temperature, velocity, and geometry. Resolving the HH54 shock wave in the far-infrared cooling lines of CO constrain the kinematics, morphology, and physical conditions of the shocked region. We used the PACS and SPIRE instruments on board the Herschel space observatory to map the full FIR spectrum in a region covering the HH54 shock wave. Complementary Herschel-HIFI, APEX, and Spitzer data are used in the analysis as well. The observed features in the line profiles are reproduced using a 3D radiative transfer model of a bow-shock, constructed with the Line Modeling Engine code (LIME). The FIR emission is confined to the HH54 region and a coherent displacement of the location of the emission maximum of CO with increasing J is observed. The peak positions of the high-J CO lines are shifted upstream from the lower J CO lines and coincide with the position of the spectral feature identified previously in CO(10-9) profiles with HIFI. This indicates a hotter molecular component in the upstream gas with distinct dynamics. The coherent displacement with increasing J for CO is consistent with a scenario where IRAS12500-7658 is the exciting source of the flow, and the 180 K bow-shock is accompanied by a hot (800 K) molecular component located upstream from the apex of the shock and blueshifted by -7 km s$^{-1}$. The spatial proximity of this knot to the peaks of the atomic fine-structure emission lines observed with Spitzer and PACS ([OI]63, 145 $\mu$m) suggests that it may be associated with the dissociative shock as the jet impacts slower moving gas in the HH54 bow-shock.
    Full-text · Article · Sep 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Detached shells are believed to be created during a thermal pulse, and constrain the time scales and physical properties of one of the main drivers of late stellar evolution. We aim at determining the morphology of the detached dust shells around the carbon AGB stars R Scl and V644 Sco, and compare this to observations of the detached gas shells. We observe the polarised, dust-scattered stellar light around these stars using the PolCor instrument mounted on the ESO 3.6m telescope. Observations were done with a coronographic mask to block out the direct stellar light. The polarised images clearly show the detached shells. Using a dust radiative transfer code to model the dust-scattered polarised light, we constrain the radii and widths of the shells to 19.5 arcsec and 9.4 arcsec for the detached dust shells around R Scl and V644 Sco, respectively. Both shells have an overall spherical symmetry and widths of approx. 2 arcsec. For R Scl we can compare the observed dust emission directly with high spatial-resolution maps of CO(3-2) emission from the shell observed with ALMA. We find that the dust and gas coincide almost exactly, indicating a common evolution. The data presented here for R Scl are the most detailed observations of the entire dusty detached shell to date. For V644 Sco these are the first direct measurements of the detached shell. Also here we find that the dust most likely coincides with the gas shell. The observations are consistent with a scenario where the detached shells are created during a thermal pulse. The determined radii and widths will constrain hydrodynamical models describing the pre-pulse mass loss, the thermal pulse, and post-pulse evolution of the star.
    Full-text · Article · Sep 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular gas constitutes the dominant mass component of protoplanetary discs. To date, these sources have not been studied comprehensively at the longest far-infrared and shortest submillimetre wavelengths. This paper presents Herschel SPIRE FTS spectroscopic observations towards 18 protoplanetary discs, covering the entire 450–1540 GHz (666–195 μm) range at ν/Δν ≈ 400–1300. The spectra reveal clear detections of the dust continuum and, in six targets, a significant amount of spectral line emission primarily attributable to 12CO rotational lines. Other targets exhibit little to no detectable spectral lines. Low signal-to-noise detections also include signatures from 13CO, [C i] and HCN. For completeness, we present upper limits of non-detected lines in all targets, including low-energy transitions of H2O and CH+ molecules. The 10 12CO lines that fall within the SPIRE FTS bands trace energy levels of ∼50–500 K. Combined with lower and higher energy lines from the literature, we compare the CO rotational line energy distribution with detailed physical–chemical models, for sources where these are available and published. Our 13CO line detections in the disc around Herbig Be star HD 100546 exceed, by factors of ∼10–30, the values predicted by a model that matches a wealth of other observational constraints, including the SPIRE 12CO ladder. To explain the observed 12CO/13CO ratio, it may be necessary to consider the combined effects of optical depth and isotope selective (photo)chemical processes. Considering the full sample of 18 objects, we find that the strongest line emission is observed in discs around Herbig Ae/Be stars, although not all show line emission. In addition, two of the six T Tauri objects exhibit detectable 12CO lines in the SPIRE range.
    Full-text · Article · Aug 2014 · Monthly Notices of the Royal Astronomical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: τ Ceti is a nearby, mature G-type star very similar to our Sun, with a massive Kuiper Belt analogue and possible multiplanet system that has been compared to our Solar system. We present Herschel Space Observatory images of the debris disc, finding the disc is resolved at 70 μm and 160 μm, and marginally resolved at 250 μm. The Herschel images and infrared photometry from the literature are best modelled using a wide dust annulus with an inner edge between 1 and 10 au and an outer edge at ∼55 au, inclined from face-on by 35° ± 10°, and with no significant azimuthal structure. We model the proposed tightly packed planetary system of five super-Earths and find that the innermost dynamically stable disc orbits are consistent with the inner edge found by the observations. The photometric modelling, however, cannot rule out a disc inner edge as close to the star as 1 au, though larger distances produce a better fit to the data. Dynamical modelling shows that the five-planet system is stable with the addition of a Neptune or smaller mass planet on an orbit outside 5 au, where the radial velocity data analysis would not have detected a planet of this mass.
    No preview · Article · Aug 2014 · Monthly Notices of the Royal Astronomical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: Far-infrared Herschel images of the Eridani system, seen at a fifth of the Sun's present age, resolve two belts of debris emission. Fits to the 160 μm PACS image yield radial spans for these belts of 12-16 and 54-68 AU. The south end of the outer belt is 10% brighter than the north end in the PACS+SPIRE images at 160, 250, and 350 μm, indicating a pericenter glow attributable to a planet "c." From this asymmetry and an upper bound on the offset of the belt center, this second planet should be mildly eccentric (ec 0.03-0.3). Compared to the asteroid and Kuiper Belts of the young Sun, the Eri belts are intermediate in brightness and more similar to each other, with up to 20 km sized collisional fragments in the inner belt totaling 5% of an Earth mass. This reservoir may feed the hot dust close to the star and could send many impactors through the Habitable Zone, especially if it is being perturbed by the suspected planet Eri b, at semi-major axis 3 AU.
    No preview · Article · Jul 2014 · The Astrophysical Journal Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The $\textit{Herschel}$ DEBRIS, DUNES and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100 and 160 $\mu$m with the sensitivity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the Solar system's Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis. We have fitted the flux densities measured from recent \textit{Herschel} observations with a simple two parameter ($T_{d}$, $L_{\rm IR}/L_{\star}$) black body model (or to the 3-$\sigma$ upper limits at 100 $\mu$m). From this uniform approach we calculate the fractional luminosity, radial extent, dust temperature and disc mass. We then plotted the calculated dust luminosity or upper limits against the stellar properties, e.g. effective temperature, metallicity, age, and identified correlations between these parameters. A total of eleven debris discs are identified around the 37 stars in the sample. An incidence of ten cool debris discs around the Sun-like exoplanet host stars (29 $\pm$ 9 %) is consistent with the detection rate found by DUNES (20.2 $\pm$ 2.0 %). For the debris disc systems, the dust temperatures range from 20 to 80 K, and fractional luminosities ($L_{\rm IR}/L_{\star}$) between 2.4 $\times$10$^{-6}$ and 4.1 $\times$10$^{-4}$. In the case of non-detections, we calculated typical 3-$\sigma$ upper limits to the dust fractional luminosities of a few $\times10^{-6}$. We recover the previously identified correlation between stellar metallicity and hot Jupiter planets in our data set. We find a correlation between the increased presence of dust, lower planet masses and lower stellar metallicities. (abridged)
    Full-text · Article · Mar 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby, solar-type binary α Centauri have metallicities that are higher than solar, which is thought to promote giant planet formation. Aims. We aim to determine the level of emission from debris around the stars in the α Cen system. This requires knowledge of their photospheres. Having already detected the temperature minimum, T_(min), of α Cen A at far-infrared wavelengths, we here attempt to do the same for the more active companion α Cen B. Using the α Cen stars as templates, we study the possible effects that T_(min) may have on the detectability of unresolved dust discs around other stars. Methods. We used Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry to determine the stellar spectral energy distributions in the far infrared and submillimetre. In addition, we used APEX-SHeFI observations for spectral line mapping to study the complex background around α Cen seen in the photometric images. Models of stellar atmospheres and of particulate discs, based on particle simulations and in conjunction with radiative transfer calculations, were used to estimate the amount of debris around these stars. Results. For solar-type stars more distant than α Cen, a fractional dust luminosity f_d ≡ L_(dust)/L_(star) ~ 2 × 10^(-7) could account for SEDs that do not exhibit the T_(min) effect. This is comparable to estimates of f_d for the Edgeworth-Kuiper belt of the solar system. In contrast to the far infrared, slight excesses at the 2.5σ level are observed at 24 μm for both α Cen A and B, which, if interpreted as due to zodiacal-type dust emission, would correspond to f_d ~ (1−3) × 10^(-5), i.e. some 10^2 times that of the local zodiacal cloud. Assuming simple power-law size distributions of the dust grains, dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the α Cen stars, viz. ≲ of 4 x 10^(-6) to M_☾ of 4 to 1000 μm size grains, distributed according to n(a) ∝ a^(−3.5). Similarly, for filled-in T_(min) emission, corresponding Edgeworth-Kuiper belts could account for ~10^(-3) M_☾ of dust. Conclusions. Our far-infrared observations lead to estimates of upper limits to the amount of circumstellar dust around the stars α Cen A and B. Light scattered and/or thermally emitted by exo-Zodi discs will have profound implications for future spectroscopic missions designed to search for biomarkers in the atmospheres of Earth-like planets. The far-infrared spectral energy distribution of α Cen B is marginally consistent with the presence of a minimum temperature region in the upper atmosphere of the star. We also show that an α Cen A-like temperature minimum may result in an erroneous apprehension about the presence of dust around other, more distant stars.
    Full-text · Article · Jan 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.
    Full-text · Article · Dec 2013 · Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: The dusty debris disk around the ~20 Myr old main-sequence A-star beta Pic is known to contain gas. Evidence points towards a secondary origin of the gas as opposed to being a direct remnant from the initial protoplanetary disk, although the dominant gas production mechanism is so far no identified. The origin of the observed overabundance of C and O compared to e.g. Na and Fe is also unclear. Aims: Our goal is to constrain the spatial distribution of C in the disk, and thereby the gas origin and its abundance pattern. Methods: We used the HIFI instrument aboard Herschel to observe and spectrally resolve C II 158 micron emission from the beta Pic debris disk. Assuming Keplerian rotation and a model for the line emission from the disk, we used the spectrally line profile to constrain the spatial distribution of the gas. Results: We detect the C II 158 micron emission. Modelling the shape of the emission line shows that most of the gas is located around ~100 AU or beyond. We estimate a total C gas mass of 0.013 Earth masses. The data suggest that more gas is located on the southwest side of the disk. The shape of the emission line in consistent with the hypothesis of a well-mixed gas. Assuming instead a spatial profile expected from a simplified accretion disk model, we found it to give a significantly worse fit to the observations. Conclusions: Since the bulk of the gas is found outside 30 AU, we argue that the cometary objects known as "falling evaporating bodies" are unlikely to be the dominant source of gas; production from grain-grain collisions or photodesorption seems more likely. The incompatibility of the observations with a simplified accretion disk model could favour a preferential depletion explanation for the overabundance of C and O. More stringent constraints on the spatial distributions will be available from ALMA observations of C I emission at 609 microns.
    Full-text · Article · Dec 2013 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.
    Full-text · Conference Paper · Nov 2013

Publication Stats

4k Citations
549.59 Total Impact Points

Institutions

  • 2015
    • Chalmers University of Technology
      Goeteborg, Västra Götaland, Sweden
  • 2008-2015
    • Stockholm University
      • Department of Astronomy
      Tukholma, Stockholm, Sweden
  • 2004-2015
    • AlbaNova University Center
      Tukholma, Stockholm, Sweden
  • 2010
    • University of Lethbridge
      • Department of Physics
      Lethbridge, Alberta, Canada
  • 1998-2000
    • National Research Council
      Roma, Latium, Italy