G. Petitpas

Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States

Are you G. Petitpas?

Claim your profile

Publications (86)339.01 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present observations of the $^{12}$CO(6-5) line and 686GHz continuum emission in NGC253 with the Submillimeter Array at an angular resolution of ~4arcsec. The $^{12}$CO(6-5) emission is clearly detected along the disk and follows the distribution of the lower $^{12}$CO line transitions with little variations of the line ratios in it. A large-velocity gradient analysis suggests a two-temperature model of the molecular gas in the disk, likely dominated by a combination of low-velocity shocks and the disk wide PDRs. Only marginal $^{12}$CO(6-5) emission is detected in the vicinity of the expanding shells at the eastern and western edges of the disk. While the eastern shell contains gas even warmer (T$_{\rm kin}$>300~K) than the hot gas component (T$_{\rm kin}$=300K) of the disk, the western shell is surrounded by gas much cooler (T$_{\rm kin}$=60K) than the eastern shell but somewhat hotter than the cold gas component of the disk (for similar H$_2$ and CO column densities), indicative of different (or differently efficient) heating mechansisms. The continuum emission at 686GHz in the disk agrees well in shape and size with that at lower (sub-)millimeter frequencies, exhibiting a spectral index consistent with thermal dust emission. We find dust temperatures of ~10-30K and largely optically thin emission. However, our fits suggest a second (more optically thick) dust component at higher temperatures (T$_{\rm d}$>60K), similar to the molecular gas. We estimate a global dust mass of ~10$^6$Msun for the disk translating into a gas-to-dust mass ratio of a few hundred consistent with other nearby active galaxies.
    No preview · Article · Jan 2016
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present millimetre (SMA) and sub-millimetre (SCUBA-2) continuum observations of the peculiar star KIC 8462852 which displayed several deep and aperiodic dips in brightness during the Kepler mission. Our observations are approximately confusion-limited at 850 $\mu$m and are the deepest millimetre and sub-millimetre photometry of the star that has yet been carried out. No significant emission is detected towards KIC 8462852. We determine upper limits for dust between a few 10$^{-6}$ M$_{\oplus}$ and 10$^{-3}$ M$_{\oplus}$ for regions identified as the most likely to host occluding dust clumps and a total overall dust budget of $<$7.7 M$_{\oplus}$ within a radius of 200 AU. Such low limits for the inner system make the catastrophic planetary disruption hypothesis unlikely. Integrating over the Kepler lightcurve we determine that at least 10$^{-9}$ M$_{\oplus}$ of dust is required to cause the observed Q16 dip. This is consistent with the currently most favoured cometary breakup hypothesis, but nevertheless implies the complete breakup of $\sim$ 30 Comet 1/P Halley type objects. Finally, in the wide SCUBA-2 field-of-view we identify another candidate debris disc system that is potentially the largest yet discovered.
    No preview · Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an analysis of 11 bright far-IR/submm sources discovered through a combination of the Planck survey and follow-up Herschel-SPIRE imaging. Each source has a redshift z=2.2-3.6 obtained through a blind redshift search with EMIR at the IRAM 30-m telescope. Interferometry obtained at IRAM and the SMA, and optical/near-infrared imaging obtained at the CFHT and the VLT reveal morphologies consistent with strongly gravitationally lensed sources. Additional photometry was obtained with JCMT/SCUBA-2 and IRAM/GISMO at 850 um and 2 mm, respectively. All objects are bright, isolated point sources in the 18 arcsec beam of SPIRE at 250 um, with spectral energy distributions peaking either near the 350 um or the 500 um bands of SPIRE, and with apparent far-infrared luminosities of up to 3x10^14 L_sun. Their morphologies and sizes, CO line widths and luminosities, dust temperatures, and far-infrared luminosities provide additional empirical evidence that these are strongly gravitationally lensed high-redshift galaxies. We discuss their dust masses and temperatures, and use additional WISE 22-um photometry and template fitting to rule out a significant contribution of AGN heating to the total infrared luminosity. Six sources are detected in FIRST at 1.4 GHz. Four have flux densities brighter than expected from the local far-infrared-radio correlation, but in the range previously found for high-z submm galaxies, one has a deficit of FIR emission, and 6 are consistent with the local correlation. The global dust-to-gas ratios and star-formation efficiencies of our sources are predominantly in the range expected from massive, metal-rich, intense, high-redshift starbursts. An extensive multi-wavelength follow-up programme is being carried out to further characterize these sources and the intense star-formation within them.
    Full-text · Article · Jun 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the redshift of an unlensed, highly obscured submillimetre galaxy (SMG), HS1700.850.1, the brightest SMG (S850 μm = 19.1 mJy) detected in the James Clerk Maxwell Telescope/Submillimetre Common-user Bolometer Array-2 (JCMT/SCUBA-2) Baryonic Structure Survey, based on the detection of its 12CO line emission. Using the Institute Radio Astronomie Millimetrique Plateau de Bure Interferometer with 3.6 GHz band width, we serendipitously detect an emission line at 150.6 GHz. From a search over 14.5 GHz in the 3- and 2-mm atmospheric windows, we confirm the identification of this line as 12CO(5–4) at z = 2.816, meaning that it does not reside in the z ∼ 2.30 proto-cluster in this field. Measurement of the 870 μm source size (<0.85 arcsec) from the Sub-Millimetre Array (SMA) confirms a compact emission in a S870 μm = 14.5 mJy, LIR ∼ 1013 L⊙ component, suggesting an Eddington-limited starburst. We use the double-peaked 12CO line profile measurements along with the SMA size constraints to study the gas dynamics of a HyLIRG, estimating the gas and dynamical masses of HS1700.850.1. While HS1700.850.1 is one of the most extreme galaxies known in the Universe, we find that it occupies a relative void in the Lyman-Break Galaxy distribution in this field. Comparison with other extreme objects at similar epochs (HyLIRG Quasars), and cosmological simulations, suggests such an anti-bias of bright SMGs could be relatively common, with the brightest SMGs rarely occupying the most overdense regions at z = 2–4.
    Full-text · Article · Mar 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of our observations of the early stages of the 2012--2013 outburst of the transient black hole X-ray binary (BHXRB), Swift J1745$-$26, with the VLA, SMA, and JCMT (SCUBA--2). Our data mark the first multiple-band mm & sub-mm observations of a BHXRB. During our observations the system was in the hard accretion state producing a steady, compact jet. The unique combination of radio and mm/sub-mm data allows us to directly measure the spectral indices in and between the radio and mm/sub-mm regimes, including the first mm/sub-mm spectral index measured for a BHXRB. Spectral fitting revealed that both the mm (230 GHz) and sub-mm (350 GHz) measurements are consistent with extrapolations of an inverted power-law from contemporaneous radio data (1--30 GHz). This indicates that, as standard jet models predict, a power-law extending up to mm/sub-mm frequencies can adequately describe the spectrum, and suggests that the mechanism driving spectral inversion could be responsible for the high mm/sub-mm fluxes (compared to radio fluxes) observed in outbursting BHXRBs. While this power-law is also consistent with contemporaneous optical data, the optical data could arise from either jet emission with a jet spectral break frequency of $\nu_{{\rm break}}\gtrsim1\times10^{14}\,{\rm Hz}$ or the combination of jet emission with a lower jet spectral break frequency of $\nu_{{\rm break}}\gtrsim2\times10^{11}\,{\rm Hz}$ and accretion disc emission. Our analysis solidifies the importance of the mm/sub-mm regime in bridging the crucial gap between radio and IR frequencies in the jet spectrum, and justifies the need to explore this regime further.
    Full-text · Article · Jan 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the blind detection of 12CO emission from a distant red galaxy, HS1700.DRG55. We have used the IRAM Plateau de Bure Interferometer WideX, with its 3.6 GHz of instantaneous dual-polarization bandwidth, to target 12CO(3–2) from galaxies lying in the protocluster at z = 2.300 in the field HS1700+64. If indeed this line in DRG55 is 12CO(3–2), its detection at 104.9 GHz indicates zCO = 2.296. None of the other eight known z ∼ 2.30 protocluster galaxies lying within the primary beam (PB) are detected in 12CO, although the limits are ∼2 × worse towards the edge of the PB where several lie. The optical/near-IR magnitudes of DRG55 (RAB > 27, KAB = 22.3) mean that optical spectroscopic redshifts are difficult with 10-m-class telescopes, but near-IR redshifts would be feasible. The 24-μm-implied star formation rate (210 M⊙ yr−1), stellar mass (∼1011 M⊙) and 12CO line luminosity (3.6 × 1010 K km s−1 pc2) are comparable to other normal 12CO-detected star-forming galaxies in the literature, although the galaxy is some ∼2 mag (∼6 ×) fainter in the rest-frame UV than 12CO-detected galaxies at z > 2. The detection of DRG55 in 12CO complements three other 12CO detected UV-bright galaxies in this protocluster from previous studies, and suggests that many optically faint galaxies in the protocluster may host substantial molecular gas reservoirs, and a full blind census of 12CO in this overdense environment is warranted.
    Full-text · Article · Jan 2015 · Monthly Notices of the Royal Astronomical Society Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studying molecular gas properties in merging galaxies gives us important clues to the onset and evolution of interaction-triggered starbursts. NGC4194 is particularly interesting to study since its FIR-to-CO luminosity ratio rivals that of ULIRGs,despite its lower luminosity compared to ULIRGs, which indicates a high star formation efficiency that is relative to even most spirals and ULIRGs.We study the molecular medium at an angular resolution of 0.65"x .52" through our observations of CO2-1 emission using the SMA. We compare our CO2-1 maps with optical HST and high angular resolution radio continuum images to study the relationship between molecular gas and other components of the starburst region. The molecular gas is tracing the complicated dust lane structure of NGC4194 with the brightest emission being located in an off-nuclear ring-like structure with ~320pc radius, the Eye of the Medusa. The bulk CO emission of the ring is found south of the kinematical center of NGC4194. The northern tip of the ring is associated with the galaxy nucleus, where the radio continuum has its peak. A prominent, secondary emission maximum in the radio continuum is located inside the molecular ring. This suggests that the morphology of the ring is partially influenced by massive supernova explosions. From the combined evidence, we propose that the Eye of the Medusa contains a shell of swept up material where we identify a number of giant molecular associations. We propose that the Eye may be the site of an efficient starburst of 5-7M_sun/yr, but it would still constitute only a fraction of the 30-50M_sun/yr SFR of NGC4194. Furthermore, we find that ~50% of the molecular mass of NGC4194 is found in extended filamentary-like structures tracing the minor and major axis dust lanes. We suggest that molecular gas is transported along these lanes providing the central starburst region with fuel.
    Preview · Article · Jul 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with peak luminosities ($L_{\rm iso} < 10^{48.5}~\rm{erg\,s}^{-1}$) substantially lower than the average of the more distant ones ($L_{\rm iso} > 10^{49.5}~\rm{erg\,s}^{-1}$). The properties of several low-luminosity (low-$L$) GRBs indicate that they can be due to shock break-out, as opposed to the emission from ultrarelativistic jets. Owing to this, it is highly debated how both populations are connected, and whether there is a continuum between them. The burst at redshift $z=0.283$ from 2012 April 22 is one of the very few examples of intermediate-$L$ GRBs with a $\gamma$-ray luminosity of $L\sim10^{48.9}~\rm{erg\,s}^{-1}$ that have been detected up to now. Together with the robust detection of its accompanying supernova SN 2012bz, it has the potential to answer important questions on the origin of low- and high-$L$ GRBs and the GRB-SN connection. We carried out a spectroscopy campaign using medium- and low-resolution spectrographs at 6--10-m class telescopes, covering the time span of 37.3 days, and a multi-wavelength imaging campaign from radio to X-ray energies over a duration of $\sim270$ days. Furthermore, we used a tuneable filter centred at H$\alpha$ to map star formation in the host galaxy and the surrounding galaxies. We used these data to extract and model the properties of different radiation components and incorporate spectral-energy-distribution fitting techniques to extract the properties of the host galaxy. Modelling the light curve and spectral energy distribution from the radio to the X-rays revealed the blast-wave to expand with an initial Lorentz factor of $\Gamma_0\sim60$, low for a high-$L$ GRB, and that the afterglow had an exceptional low peak luminosity-density of $\lesssim2\times10^{30}~\rm{erg\,s}^{-1}\,\rm{Hz}^{-1}$ in the sub-mm. [Abridged]
    Full-text · Article · Jan 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a method for selecting z > 4 dusty, star-forming galaxies (DSFGs) using Herschel/Spectral and Photometric Imaging Receiver 250/350/500 μm flux densities to search for red sources. We apply this method to 21 deg2 of data from the HerMES survey to produce a catalog of 38 high-z candidates. Follow-up of the first five of these sources confirms that this method is efficient at selecting high-z DSFGs, with 4/5 at z = 4.3-6.3 (and the remaining source at z = 3.4), and that they are some of the most luminous dusty sources known. Comparison with previous DSFG samples, mostly selected at longer wavelengths (e.g., 850 μm) and in single-band surveys, shows that our method is much more efficient at selecting high-z DSFGs, in the sense that a much larger fraction are at z > 3. Correcting for the selection completeness and purity, we find that the number of bright (S 500 μm ≥ 30 mJy), red Herschel sources is 3.3 ± 0.8 deg–2. This is much higher than the number predicted by current models, suggesting that the DSFG population extends to higher redshifts than previously believed. If the shape of the luminosity function for high-z DSFGs is similar to that at z ~ 2, rest-frame UV based studies may be missing a significant component of the star formation density at z = 4-6, even after correction for extinction.
    Full-text · Article · Oct 2013 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a ˜1″ (100 pc) resolution CO(3–2) map of the Antennae galaxies obtained with the Submillimeter Array. We find that only < 30% of the GMAs spatially coincides with the optically detected star clusters, suggesting that the bulk of the CO (3–2) emission traces the regions with very recent or near future star formation activity. A high CO (3–2)/(1–0) ratio is seen in both nuclei and the southern complexes in the overlap region. Higher radiation field associated with intense star formation can account for the nucleus of NGC 4038 and the overlap region, but the nuclear region of NGC 4039 show relatively little star formation or AGN activities and cannot easily explained. We show kinematical evidence that the high line ratio in NGC 4039 is possibly caused by gas inflow into the counter-rotating central disk.
    No preview · Article · Oct 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present high-resolution (~25) observations of 12CO J = 6-5 toward the luminous infrared galaxy VV 114 using the Submillimeter Array. We detect 12CO J = 6-5 emission from the eastern nucleus of VV 114 but do not detect the western nucleus or the central region. We combine the new 12CO J = 6-5 observations with previously published or archival low-J CO observations, which include 13CO J = 1-0 Atacama Large Millimeter/submillimeter Array cycle 0 observations, to analyze the beam-averaged physical conditions of the molecular gas in the eastern nucleus. We use the radiative transfer code RADEX and a Bayesian likelihood code to constrain the temperature (T kin), density (), and column density () of the molecular gas. We find that the most probable scenario for the eastern nucleus is a cold (T kin = 38 K), moderately dense ( = 102.89 cm–3) molecular gas component. We find that the most probable 12CO to 13CO abundance ratio ([12CO]/[13CO]) is 229, which is roughly three times higher than the Milky Way value. This high abundance ratio may explain the observed high 12CO/ 13CO line ratio (>25). The unusual 13CO J = 2-1/J = 1-0 line ratio of 0.6 is produced by a combination of moderate 13CO optical depths (τ = 0.4-1.1) and extremely subthermal excitation temperatures. We measure the CO-to-H2 conversion factor, αCO, to be 0.5M ☉ (K km s–1 pc2)–1, which agrees with the widely used factor for ultra luminous infrared galaxies of Downes & Solomon (αCO = 0.8 M ☉ (K km s–1 pc2)–1).
    Preview · Article · Sep 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-ray bursts are the most luminous explosions that we can witness in the Universe. Studying the most extreme cases of these phenomena allows us to constrain the limits for the progenitor models. In this Letter, we study the prompt emission, afterglow, and host galaxy of GRB 120624B, one of the brightest GRBs detected by Fermi, to derive the energetics of the event and characterise the host galaxy in which it was produced. Following the high-energy detection we conducted a multi-wavelength follow-up campaign, including near-infrared imaging from HAWKI/VLT, optical from OSIRIS/GTC, X-ray observations from the Chandra X-ray Observatory and at sub-millimetre/millimetre wavelengths from SMA. Optical/nIR spectroscopy was performed with X-shooter/VLT. We detect the X-ray and nIR afterglow of the burst and determine a redshift of z = 2.1974 +/- 0.0002 through the identification of emission lines of [OII], [OIII] and H-alpha from the host galaxy of the GRB. This implies an energy release of Eiso = (3.0+/-0.2)x10^54 erg, amongst the most luminous ever detected. The observations of the afterglow indicate high obscuration with AV > 1.5. The host galaxy is compact, with R1/2 < 1.6 kpc, but luminous, at L ~ 1.5 L* and has a star formation rate of 91 +/- 6 Msol/yr as derived from H-alpha. As other highly obscured GRBs, GRB 120624B is hosted by a luminous galaxy, which we also proof to be compact, with a very intense star formation. It is one of the most luminous host galaxies associated with a GRB, showing that the host galaxies of long GRBs are not always blue dwarf galaxies, as previously thought.
    Full-text · Article · Sep 2013 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts-that is, increased rates of star formation-in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ∼5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
    Full-text · Article · Apr 2013 · Nature
  • S. Martin · A. de Ugarte Postigo · G. Petitpas

    No preview · Article · Jan 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The James Clerk Maxwell Telescope Nearby Galaxies Legacy Survey (NGLS) comprises an H i-selected sample of 155 galaxies spanning all morphological types with distances less than 25 Mpc. We describe the scientific goals of the survey, the sample selection and the observing strategy. We also present an atlas and analysis of the CO J=3 - 2 maps for the 47 galaxies in the NGLS which are also part of the Spitzer Infrared Nearby Galaxies Survey. We find a wide range of molecular gas mass fractions in the galaxies in this sample and explore the correlation of the far-infrared luminosity, which traces star formation, with the CO luminosity, which traces the molecular gas mass. By comparing the NGLS data with merging galaxies at low and high redshift, which have also been observed in the CO J=3 - 2 line, we show that the correlation of far-infrared and CO luminosity shows a significant trend with luminosity. This trend is consistent with a molecular gas depletion time which is more than an order of magnitude faster in the merger galaxies than in nearby normal galaxies. We also find a strong correlation of the LFIR/LCO(3-2) ratio with the atomic-to-molecular gas mass ratio. This correlation suggests that some of the far-infrared emission originates from dust associated with atomic gas and that its contribution is particularly important in galaxies where most of the gas is in the atomic phase.
    Full-text · Article · Aug 2012 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The James Clerk Maxwell Telescope Nearby Galaxies Legacy Survey (NGLS) comprises an HI-selected sample of 155 galaxies spanning all morphological types with distances less than 25 Mpc. We describe the scientific goals of the survey, the sample selection, and the observing strategy. We also present an atlas and analysis of the CO J=3-2 maps for the 47 galaxies in the NGLS which are also part of the Spitzer Infrared Nearby Galaxies Survey. We find a wide range of molecular gas mass fractions in the galaxies in this sample and explore the correlation of the far-infrared luminosity, which traces star formation, with the CO luminosity, which traces the molecular gas mass. By comparing the NGLS data with merging galaxies at low and high redshift which have also been observed in the CO J=3-2 line, we show that the correlation of far-infrared and CO luminosity shows a significant trend with luminosity. This trend is consistent with a molecular gas depletion time which is more than an order of magnitude faster in the merger galaxies than in nearby normal galaxies. We also find a strong correlation of the L(FIR)/L(CO3-2) ratio with the atomic to molecular gas mass ratio. This correlation suggests that some of the far-infrared emission originates from dust associated with atomic gas and that its contribution is particularly important in galaxies where most of the gas is in the atomic phase.
    Full-text · Article · Jun 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have constructed a five station 12 GHz atmospheric phase interferometer (API) for the Submillimeter Array (SMA) located near the summit of Mauna Kea, Hawaii. Operating at the base of unoccupied SMA antenna pads, each station employs a commercial low noise mixing block coupled to a 0.7 m off-axis satellite dish which receives a broadband, white noise-like signal from a geostationary satellite. The signals are processed by an analog correlator to produce the phase delays between all pairs of stations with projected baselines ranging from 33 to 261 m. Each baseline's amplitude and phase is measured continuously at a rate of 8 kHz, processed, averaged and output at 10 Hz. Further signal processing and data reduction is accomplished with a Linux computer, including the removal of the diurnal motion of the target satellite. The placement of the stations below ground level with an environmental shield combined with the use of low temperature coefficient, buried fiber optic cables provides excellent system stability. The sensitivity in terms of rms path length is 1.3 microns which corresponds to phase deviations of about 1 degree of phase at the highest operating frequency of the SMA. The two primary data products are: (1) standard deviations of observed phase over various time scales, and (2) phase structure functions. These real-time statistical data measured by the API in the direction of the satellite provide an estimate of the phase front distortion experienced by the concurrent SMA astronomical observations. The API data also play an important role, along with the local opacity measurements and weather predictions, in helping to plan the scheduling of science observations on the telescope.
    Preview · Article · May 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have used high-resolution (~23) observations of the local (D L = 46 Mpc) luminous infrared galaxy Arp 299 to map out the physical properties of the molecular gas that provides the fuel for its extreme star formation activity. The 12CO J = 3-2, 12CO J = 2-1, and 13CO J = 2-1 lines were observed with the Submillimeter Array, and the short spacings of the 12CO J = 2-1 and J = 3-2 observations have been recovered using the James Clerk Maxwell Telescope single dish observations. We use the radiative transfer code RADEX to estimate the physical properties (density, column density, and temperature) of the different regions in this system. The RADEX solutions of the two galaxy nuclei, IC 694 and NGC 3690, are consistent with a wide range of gas components, from warm moderately dense gas with T kin > 30 K and n(H2) ~ 0.3-3 × 103 cm–3 to cold dense gas with T kin ~ 10-30 K and n(H2) > 3 × 103 cm–3. The overlap region is shown to have a better constrained solution with T kin ~ 10-50 K and n(H2) ~ 1-30 × 103 cm–3. We estimate the gas masses and star formation rates of each region in order to derive molecular gas depletion times. The depletion times of all regions (20-50 Myr) are found to be about two orders of magnitude lower than those of normal spiral galaxies. This rapid depletion time can probably be explained by a high fraction of dense gas on kiloparsec scales in Arp 299. We estimate the CO-to-H2 factor, αco to be 0.4 ± 0.3(3 × 10–4/x CO) M ☉ (K km s–1 pc2)–1 for the overlap region. This value agrees well with values determined previously for more advanced merger systems.
    Preview · Article · Apr 2012 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GRBs generate an afterglow emission that can be detected from radio to X-rays during days, or even weeks after the initial explosion. The peak of this emission crosses the mm/submm range during the first hours to days, making their study in this range crucial for constraining the models. Observations have been limited until now due to the low sensitivity of the observatories in this range. We present observations of 10 GRB afterglows obtained from APEX and SMA, as well as the first detection of a GRB with ALMA, and put them into context with all the observations that have been published until now in the spectral range that will be covered by ALMA. The catalogue of mm/submm observations collected here is the largest to date and is composed of 102 GRBs, of which 88 had afterglow observations, whereas the rest are host galaxy searches. With our programmes, we contributed with data of 11 GRBs and the discovery of 2 submm counterparts. In total, the full sample, including data from the literature, has 22 afterglow detections with redshift ranging from 0.168 to 8.2. GRBs have been detected in mm/submm wavelengths with peak luminosities spanning 2.5 orders of magnitude, the most luminous reaching 10^33erg s^-1 Hz^-1. We observe a correlation between the X-ray brightness at 0.5 days and the mm/submm peak brightness. Finally we give a rough estimate of the distribution of peak flux densities of GRB afterglows, based on the current mm/submm sample. Observations in the mm/submm bands have been shown to be crucial for our understanding of the physics of GRBs, but have until now been limited by the sensitivity of the observatories. With the start of the operations at ALMA, the sensitivity will be increased by more than an order of magnitude. Our estimates predict that, once completed, ALMA will detect up to 98% of the afterglows if observed during the passage of the peak synchrotron emission.
    Full-text · Article · Feb 2012 · Astronomy and Astrophysics
  • S. Martin · G. Petitpas · A. de Ugarte Postigo

    No preview · Article · Jan 2012

Publication Stats

2k Citations
339.01 Total Impact Points

Institutions

  • 2007-2015
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 2010
    • Academia Sinica
      • Institute of Astronomy and Astrophysics
      Taipei, Taipei, Taiwan
  • 2009
    • National Astronomical Observatory of Japan
      • Astronomy Data Center
      Edo, Tōkyō, Japan
  • 2008
    • United States Naval Observatory
      Вашингтон, Maine, United States
  • 2004
    • Loyola University Maryland
      Baltimore, Maryland, United States
  • 2003
    • University of Maryland, College Park
      • Department of Astronomy
      Maryland, United States
  • 1997-2002
    • McMaster University
      • Department of Physics and Astronomy
      Hamilton, Ontario, Canada