D. R. Ardila

California Institute of Technology, Pasadena, California, United States

Are you D. R. Ardila?

Claim your profile

Publications (166)445.14 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The transfer of matter between a circumbinary disk and a young binary system remains poorly understood, obscuring the interpretation of accretion indicators. To explore the behavior of these indicators in multiple systems, we have performed the first systematic time-domain study of young binaries in the ultraviolet. We obtained far- and near-ultraviolet HST/COS spectra of the young spectroscopic binaries DQ Tau and UZ Tau E. Here we focus on the continuum from 2800 to 3200 A° and on the C iv doublet (λλ1548.19, 1550.77 A°) as accretion diagnostics. Each system was observed over three or four consecutive binary orbits, at phases ∼0, 0.2, 0.5, and 0.7. Those observations are complemented by ground-based U-band measurements. Contrary to model predictions, we do not detect any clear correlation between accretion luminosity and phase. Further, we do not detect any correlation between C iv flux and phase. For both stars the appearance of the C iv line is similar to that of single Classical T Tauri Stars (CTTSs), despite the lack of stable long-lived circumstellar disks. However, unlike the case in single CTTSs, the narrow and broad components of the C iv lines are uncorrelated, and we argue that the narrow component is powered by processes other than accretion, such as flares in the stellar magnetospheres and/or enhanced activity in the upper atmosphere. We find that both stars contribute equally to the narrow component C iv flux in DQ Tau, but the primary dominates the narrow component C iv emission in UZ Tau E. The C iv broad component flux is correlated with other accretion indicators, suggesting an accretion origin. However, the line is blueshifted, which is inconsistent with its origin in an infall flow close to the star. It is possible that the complicated geometry of the region, as well as turbulence in the shock region, are responsible for the blueshifted line profiles. © 2015. The American Astronomical Society. All rights reserved.
    No preview · Article · Sep 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional and debris disks) collected from the {\it Spitzer} archive. We focus on the two brighter {H~{\sc i}} lines observed in the {\it Spitzer} spectra, the {H~{\sc i}}(7-6) at 12.37$\mu$m and the {H~{\sc i}}(9-7) at 11.32$\mu$m. We detect the {H~{\sc i}}(7-6) line in 46 objects, and the {H~{\sc i}}(9-7) in 11. We compare these lines with the other most common gas line detected in {\it Spitzer} spectra, the {[Ne~{\sc iii}]} at 12.81$\mu$m. We argue that it is unlikely that the {H~{\sc i}} emission originates from the photoevaporating upper surface layers of the disk, as has been found for the {[Ne~{\sc iii}]} lines toward low-accreting stars. Using the {H~{\sc i}}(9-7)/{H~{\sc i}}(7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 10$^{10}$-10$^{11}$~cm$^{-3}$. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the {H~{\sc i}} line luminosity. These two results suggest that the observed mid-IR {H~{\sc i}} lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks.We report for the first time the detection of the {H~{\sc i}}(7-6) line in eight young (< 20~Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the {H~{\sc i}}(7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 10$^{-10}$M$_{\odot}$/yr. We discuss some advantages of extending accretion indicators to longer wavelengths.
    Full-text · Article · Jan 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: The YSOVAR (Young Stellar Object VARiability) Spitzer Space Telescope observing program obtained the first extensive mid-infrared (3.6 and 4.5 μm) time series photometry of the Orion Nebula Cluster plus smaller footprints in 11 other star-forming cores (AFGL 490, NGC 1333, Mon R2, GGD 12-15, NGC 2264, L1688, Serpens Main, Serpens South, IRAS 20050+2720, IC 1396A, and Ceph C). There are ~29,000 unique objects with light curves in either or both IRAC channels in the YSOVAR data set. We present the data collection and reduction for the Spitzer and ancillary data, and define the "standard sample" on which we calculate statistics, consisting of fast cadence data, with epochs roughly twice per day for ~40 days. We also define a "standard sample of members" consisting of all the IR-selected members and X-ray-selected members. We characterize the standard sample in terms of other properties, such as spectral energy distribution shape. We use three mechanisms to identify variables in the fast cadence data—the Stetson index, a χ^2 fit to a flat light curve, and significant periodicity. We also identified variables on the longest timescales possible of six to seven years by comparing measurements taken early in the Spitzer mission with the mean from our YSOVAR campaign. The fraction of members in each cluster that are variable on these longest timescales is a function of the ratio of Class I/total members in each cluster, such that clusters with a higher fraction of Class I objects also have a higher fraction of long-term variables. For objects with a YSOVAR-determined period and a [3.6]-[8] color, we find that a star with a longer period is more likely than those with shorter periods to have an IR excess. We do not find any evidence for variability that causes [3.6]-[4.5] excesses to appear or vanish within our data set; out of members and field objects combined, at most 0.02% may have transient IR excesses.
    No preview · Article · Nov 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dust in debris disks is produced by colliding or evaporating planetesimals, remnants of the planet formation process. Warm dust disks, known by their emission at < 24 micron, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in beta Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around eta Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission.
    Full-text · Article · Sep 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The YSOVAR (Young Stellar Object VARiability) Spitzer Space Telescope observing program obtained the first extensive mid-infrared (3.6 & 4.5 um) time-series photometry of the Orion Nebula Cluster plus smaller footprints in eleven other star-forming cores (AFGL490, NGC1333, MonR2, GGD 12-15, NGC2264, L1688, Serpens Main, Serpens South, IRAS 20050+2720, IC1396A, and Ceph C). There are ~29,000 unique objects with light curves in either or both IRAC channels in the YSOVAR data set. We present the data collection and reduction for the Spitzer and ancillary data, and define the "standard sample" on which we calculate statistics, consisting of fast cadence data, with epochs about twice per day for ~40d. We also define a "standard sample of members", consisting of all the IR-selected members and X-ray selected members. We characterize the standard sample in terms of other properties, such as spectral energy distribution shape. We use three mechanisms to identify variables in the fast cadence data--the Stetson index, a chi^2 fit to a flat light curve, and significant periodicity. We also identified variables on the longest timescales possible of ~6 years, by comparing measurements taken early in the Spitzer mission with the mean from our YSOVAR campaign. The fraction of members in each cluster that are variable on these longest timescales is a function of the ratio of Class I/total members in each cluster, such that clusters with a higher fraction of Class I objects also have a higher fraction of long-term variables. For objects with a YSOVAR-determined period and a [3.6]-[8] color, we find that a star with a longer period is more likely than those with shorter periods to have an IR excess. We do not find any evidence for variability that causes [3.6]-[4.5] excesses to appear or vanish within our data; out of members and field objects combined, at most 0.02% may have transient IR excesses.
    Full-text · Article · Aug 2014 · The Astronomical Journal
  • J. S. Greaves · D. R. Ardila
    [Show abstract] [Hide abstract]
    ABSTRACT: Many nearby main-sequence stars have been searched for debris using the far-infrared Herschel satellite, within the DEBRIS, DUNES and Guaranteed-Time Key Projects. We discuss here 11 stars of spectral types A–M where the stellar inclination is known and can be compared to that of the spatially resolved dust belts. The discs are found to be well aligned with the stellar equators, as in the case of the Sun's Kuiper belt, and unlike many close-in planets seen in transit surveys. The ensemble of stars here can be fitted with a star–disc tilt of ≲ 10°. These results suggest that proposed mechanisms for tilting the star or disc in fact operate rarely. A few systems also host imaged planets, whose orbits at tens of au are aligned with the debris discs, contrary to what might be expected in models where external perturbers induce tilts.
    No preview · Article · Feb 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby, solar-type binary α Centauri have metallicities that are higher than solar, which is thought to promote giant planet formation. Aims. We aim to determine the level of emission from debris around the stars in the α Cen system. This requires knowledge of their photospheres. Having already detected the temperature minimum, T_(min), of α Cen A at far-infrared wavelengths, we here attempt to do the same for the more active companion α Cen B. Using the α Cen stars as templates, we study the possible effects that T_(min) may have on the detectability of unresolved dust discs around other stars. Methods. We used Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry to determine the stellar spectral energy distributions in the far infrared and submillimetre. In addition, we used APEX-SHeFI observations for spectral line mapping to study the complex background around α Cen seen in the photometric images. Models of stellar atmospheres and of particulate discs, based on particle simulations and in conjunction with radiative transfer calculations, were used to estimate the amount of debris around these stars. Results. For solar-type stars more distant than α Cen, a fractional dust luminosity f_d ≡ L_(dust)/L_(star) ~ 2 × 10^(-7) could account for SEDs that do not exhibit the T_(min) effect. This is comparable to estimates of f_d for the Edgeworth-Kuiper belt of the solar system. In contrast to the far infrared, slight excesses at the 2.5σ level are observed at 24 μm for both α Cen A and B, which, if interpreted as due to zodiacal-type dust emission, would correspond to f_d ~ (1−3) × 10^(-5), i.e. some 10^2 times that of the local zodiacal cloud. Assuming simple power-law size distributions of the dust grains, dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the α Cen stars, viz. ≲ of 4 x 10^(-6) to M_☾ of 4 to 1000 μm size grains, distributed according to n(a) ∝ a^(−3.5). Similarly, for filled-in T_(min) emission, corresponding Edgeworth-Kuiper belts could account for ~10^(-3) M_☾ of dust. Conclusions. Our far-infrared observations lead to estimates of upper limits to the amount of circumstellar dust around the stars α Cen A and B. Light scattered and/or thermally emitted by exo-Zodi discs will have profound implications for future spectroscopic missions designed to search for biomarkers in the atmospheres of Earth-like planets. The far-infrared spectral energy distribution of α Cen B is marginally consistent with the presence of a minimum temperature region in the upper atmosphere of the star. We also show that an α Cen A-like temperature minimum may result in an erroneous apprehension about the presence of dust around other, more distant stars.
    Full-text · Article · Jan 2014 · Astronomy and Astrophysics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many planets are known to reside around binaries and the study of young binary systems is crucial to understand their formation. Young ($<10$ Myrs) low-mass binaries are generally surrounded by circumbinary disk with an inner gap. Gas from the disk must cross this gap for accretion to take place and here we present observations of this process as a function of orbital phase. We have obtained time-resolved FUV and NUV spectroscopy (1350 to 3000 A) of DQ Tau and UZ Tau E, using the Cosmic Origins Spectrograph on-board the Hubble Space Telescope. Each target was observed 2 to 4 times per binary orbit, over three or four consecutive orbits. For DQ Tau, we find some evidence that accretion occurs equally into both binary members, while for UZ Tau E this is not the case. H2 emission for DQ Tau most likely originates within the circumbinary gap, while for UZ Tau E no 1000 K gas is detected within the gap, although magnetospheric accretion does take place.
    No preview · Article · Jan 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context. The gas- and dust dissipation processes in disks around young stars remain uncertain despite numerous studies. At the distance of ~99–116 pc, HD 141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disk, probably in transition between a massive primordial disk and a debris disk. Atomic and molecular gases have been found in the structured 5-Myr old HD 141569A disk, making HD 141569A the perfect object within which to directly study the gaseous atomic and molecular component. Aims. We wish to constrain the gas and dust mass in the disk around HD 141569A. Methods. We observed the fine-structure lines of O I at 63 and 145 μm and the C ii line at 157 μm with the PACS instrument onboard the Herschel Space Telescope as part of the open-time large program GASPS. We complemented the atomic line observations with archival Spitzer spectroscopic and photometric continuum data, a ground-based VLT-VISIR image at 8.6 μm, and ^(12)CO fundamental ro-vibrational and pure rotational J = 3–2 observations. We simultaneously modeled the continuum emission and the line fluxes with the Monte Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disk gas- and dust properties assuming no dust settling. Results. The models suggest that the oxygen lines are emitted from the inner disk around HD 141569A, whereas the [C ii] line emission is more extended. The CO submillimeter flux is emitted mostly by the outer disk. Simultaneous modeling of the photometric and line data using a realistic disk structure suggests a dust mass derived from grains with a radius smaller than 1 mm of ~2.1 × 10^(-7)M_⊙ and from grains with a radius of up to 1 cm of 4.9 × 10^(-6)M_⊙. We constrained the polycyclic aromatic hydrocarbons (PAH) mass to be between 2 × 10^(-11) and 1.4 × 10^(-10)M_⊙ assuming circumcircumcoronene (C_(150)H_(30)) as the representative PAH. The associated PAH abundance relative to hydrogen is lower than those found in the interstellar medium (3 × 10^(-7)) by two to three orders of magnitude. The disk around HD 141569A is less massive in gas (2.5 to 4.9 × 10^(-4)M_⊙ or 67 to 164 M_⊕) and has a flat opening angle (<10%). Conclusions. We constrained simultaneously the silicate dust grain, PAH, and gas mass in a ~5-Myr old Herbig Ae disk. The disk-averaged gas-to-dust-mass is most likely around 100, which is the assumed value at the disk formation despite the uncertainties due to disagreements between the different gas tracers. If the disk was originally massive, the gas and the dust would have dissipated at the same rate.
    No preview · Article · Jan 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many nearby main-sequence stars have been searched for debris using the far-infrared Herschel satellite, within the DEBRIS, DUNES and Guaranteed-Time Key Projects. We discuss here 11 stars of spectral types A–M where the stellar inclination is known and can be compared to that of the spatially resolved dust belts. The discs are found to be well aligned with the stellar equators, as in the case of the Sun's Kuiper belt, and unlike many close-in planets seen in transit surveys. The ensemble of stars here can be fitted with a star–disc tilt of ≲ 10°. These results suggest that proposed mechanisms for tilting the star or disc in fact operate rarely. A few systems also host imaged planets, whose orbits at tens of au are aligned with the debris discs, contrary to what might be expected in models where external perturbers induce tilts.
    Full-text · Article · Oct 2013 · Monthly Notices of the Royal Astronomical Society Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At the distance of 99-116 pc, HD141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disk, probably in transition between a massive primordial disk and a debris disk. We observed the fine-structure lines of OI at 63 and 145 micron and the CII line at 157 micron with the PACS instrument onboard the Herschel Space Telescope as part of the open-time large programme GASPS. We complemented the atomic line observations with archival Spitzer spectroscopic and photometric continuum data, a ground-based VLT-VISIR image at 8.6 micron, and 12CO fundamental ro-vibrational and pure rotational J=3-2 observations. We simultaneously modeled the continuum emission and the line fluxes with the Monte Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disk gas- and dust properties assuming no dust settling. The models suggest that the oxygen lines are emitted from the inner disk around HD141569A, whereas the [CII] line emission is more extended. The CO submillimeter flux is emitted mostly by the outer disk. Simultaneous modeling of the photometric and line data using a realistic disk structure suggests a dust mass derived from grains with a radius smaller than 1 mm of 2.1E-7 MSun and from grains with a radius of up to 1 cm of 4.9E-6 MSun. We constrained the polycyclic aromatic hydrocarbons (PAH) mass to be between 2E-11 and 1..4E-10 MSun assuming circumcircumcoronene (C150H30) as the representative PAH. The associated PAH abundance relative to hydrogen is lower than those found in the interstellar medium (3E-7) by two to three orders of magnitude. The disk around HD141569A is less massive in gas (2.5 to 4.9E-4 MSun or 67 to 164 MEarth) and has a flat opening angle (<10%). [abridged]
    Full-text · Article · Sep 2013 · Astronomy and Astrophysics
  • A. V. Krivov · D. Ardila
    [Show abstract] [Hide abstract]
    ABSTRACT: Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around ~100 μm or shorter. However, 6 out of 31 excess sources studied in the Herschel Open Time Key Programme, DUNES, have been seen to show significant—and in some cases extended—excess emission at 160 μm, which is larger than the 100 μm excess. This excess emission has been attributed to circumstellar dust and has been suggested to stem from debris disks colder than those known previously. Since the excess emission of the cold disk candidates is extremely weak, challenging even the unrivaled sensitivity of Herschel, it is prudent to carefully consider whether some or even all of them may represent unrelated galactic or extragalactic emission, or even instrumental noise. We re-address these issues using several distinct methods and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the spectral energy distributions and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than ~100 μm, even if they are rich in ices or are composed of any other material with a low absorption in the visible. The dearth of small grains is puzzling, since collisional models of debris disks predict that grains of all sizes down to several times the radiation pressure blowout limit should be present. We explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can indeed survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller than a few kilometers in size. If larger planetesimals were present, then they would stir the disk, triggering a collisional cascade and thus causing production of small debris, which is not seen. Thus, planetesimal formation, at least in the outer regions of the systems, has stopped before "cometary" or "asteroidal" sizes were reached.
    No preview · Article · Jul 2013
  • C. Eiroa · D. Ardila · C. Beichmann
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts. Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. Methods. We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 μm were obtained, complemented in some cases with observations at 70 μm, and at 250, 350 and 500 μm using SPIRE. The observing strategy was to integrate as deep as possible at 100 μm to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of ~12.1% ± 5% before Herschel to ~20.2% ± 2%. A significant fraction (~52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70–160 μm range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.
    No preview · Article · Jul 2013
  • Article: Herschel's
    [Show abstract] [Hide abstract]
    ABSTRACT: Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around ~100 μm or shorter. However, 6 out of 31 excess sources studied in the Herschel Open Time Key Programme, DUNES, have been seen to show significant—and in some cases extended—excess emission at 160 μm, which is larger than the 100 μm excess. This excess emission has been attributed to circumstellar dust and has been suggested to stem from debris disks colder than those known previously. Since the excess emission of the cold disk candidates is extremely weak, challenging even the unrivaled sensitivity of Herschel, it is prudent to carefully consider whether some or even all of them may represent unrelated galactic or extragalactic emission, or even instrumental noise. We re-address these issues using several distinct methods and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the spectral energy distributions and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than ~100 μm, even if they are rich in ices or are composed of any other material with a low absorption in the visible. The dearth of small grains is puzzling, since collisional models of debris disks predict that grains of all sizes down to several times the radiation pressure blowout limit should be present. We explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can indeed survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller than a few kilometers in size. If larger planetesimals were present, then they would stir the disk, triggering a collisional cascade and thus causing production of small debris, which is not seen. Thus, planetesimal formation, at least in the outer regions of the systems, has stopped before "cometary" or "asteroidal" sizes were reached.
    No preview · Article · Jul 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (abridged) Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around ~100{\mu}m or shorter. However, six out of 31 excess sources in the Herschel OTKP DUNES have been seen to show significant - and in some cases extended - excess emission at 160{\mu}m, which is larger than the 100{\mu}m excess. This excess emission has been suggested to stem from debris disks colder than those known previously. Using several methods, we re-consider whether some or even all of the candidates may be associated with unrelated galactic or extragalactic emission and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the SEDs and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than ~100{\mu}m, regardless of their material composition. To explain the dearth of small grains, we explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller than kilometers in size. Thus planetesimal formation, at least in the outer regions of the systems, has stopped before "cometary" or "asteroidal" sizes were reached.
    Full-text · Article · Jun 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. Circumstellar discs are the places where planets form, therefore knowledge of their evolution is crucial for our understanding of planet formation. The Herschel Space Observatory is providing valuable data for studying disc systems, thanks to its sensitivity and wavelength coverage. This paper is one of several devoted to analysing and modelling Herschel-PACS observations of various young stellar associations from the GASPS open time key programme. Aims. The aim of this paper is to elucidate the gas and dust properties of circumstellar discs in the ~10 Myr TW Hya association (TWA) using new far-infrared (IR) imaging and spectroscopy from Herschel-PACS. Methods. We obtained far-IR photometric data at 70, 100, and 160 μm of 14 TWA members; spectroscopic observations centred on the [OI] line at 63.18 μm were also obtained for 9 of the 14. The new photometry for each star was incorporated into its full spectral energy distribution. Results. We detected excess IR emission that is characteristic of circumstellar discs from five TWA members, and computed upper limits for another nine. Two TWA members (TWA 01 and TWA 04B) also show [OI] emission at 63.18 μm. Discs in the TWA association display a variety of properties, with a wide range of dust masses and inner radii, based on modified blackbody modelling. Both transitional and debris discs are found in the sample. Models for sources with a detected IR excess give dust masses in the range from ~0.15 M_⊕ to ~63 M_
    Full-text · Article · Jun 2013 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GASPS is a far-infrared line and continuum survey of protoplanetary and young debris disks using PACS on the Herschel Space Observatory. The survey includes [OI] at 63 microns, as well as 70, 100 and 160um continuum, with the brightest objects also studied in [OI]145um, [CII]157um, H2O and CO. Targets included T Tauri stars and debris disks in 7 nearby young associations, and a sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide disk sample, systemically comparing the results with models. In this paper we review the main aims, target selection and observing strategy. We show initial results, including line identifications, sources detected, and a first statistical study. [OI]63um was the brightest line in most objects, by a factor of ~10. Detection rates were 49%, including 100% of HAeBe stars and 43% of T Tauri stars. Comparison with published dust masses show a dust threshold for [OI]63um detection of ~1e-5 M_solar. Normalising to 140pc distance, 32% with mass 1e-6 - 1e-5 M_solar, and a small number with lower mass were also detected. This is consistent with moderate UV excess and disk flaring. In most cases, continuum and line emission is spatially and spectrally unresolved, suggesting disk emission. ~10 objects were resolved, likely from outflows. Detection rates in [OI]145um, [CII]157um and CO J=18-17 were 20-40%, but [CII] was not correlated with disk mass, suggesting it arises instead from a compact envelope. [OI] detection rates in T Tauri associations of ages 0.3-4Myr were ~50%. ~2 stars were detectable in associations of 5-20Myr, with no detections in associations of age >20Myr. Comparing with the total number of young stars, and assuming a ISM-like gas/dust ratio, this indicates that ~18% of stars retain a gas-rich disk of total mass >1M_Jupiter for 1-4Myr, 1-7% keep such disks for 5-10Myr, and none remain beyond 10-20Myr.
    Full-text · Article · Jun 2013 · Publications of the Astronomical Society of the Pacific
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the "Gas in Protoplanetary Systems" (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 \mu m; 49 Cet is significantly extended in the 70 \mu m image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [OI] 63 \mu m and [CII] 158 \mu m. The CII line was detected at the 5\sigma\ level - the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the OI line is the brightest one observed in Herschel protoplanetary disk spectra (Meeus et al. 2012; Dent et al. 2013). We present an estimate of the amount of circumstellar atomic gas implied by the CII emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.
    Full-text · Article · May 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system's counterparts are the asteroid and Edgeworth-Kuiper belts. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. We used {\it Herschel}/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 $\mu$m were obtained, complemented in some cases with observations at 70 $\mu$m, and at 250, 350 and 500 $\mu$m using SPIRE. The observing strategy was to integrate as deep as possible at 100 $\mu$m to detect the stellar photosphere. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of $\sim$ 12.1% $\pm$ 5% before \emph{Herschel} to $\sim$ 20.2% $\pm$ 2%. A significant fraction ($\sim$ 52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160$\mu$m range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.
    Full-text · Article · May 2013 · Astronomy and Astrophysics
  • W. R. F. Dent · D. Ardila · D. Ciardi
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted ∼250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 μm the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 μm, [CII] at 157 μm, as well as several transitions of H_2O and high-excitation CO lines at selected wavelengths between 78 and 180 μm. Additionally, GASPS included continuum photometry at 70, 100 and 160 μm, around the peak of the dust emission. The targets were SED Class II–III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarise some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 μm was the brightest line seen in almost all objects, by a factor of ∼10. Overall [OI]63 μm detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI]63 μm detection of ∼10^(-5) M_⊙. Normalising to a distance of 140 pc, 84% of objects with dust masses ≥10^(-5) M_⊙ can be detected in this line in the present survey; 32% of those of mass 10^(-6)–10^(-5) M_⊙, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centred on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3–4 Myr age range were ∼50%. For each association in the 5–20 Myr age range, ∼2 stars remain detectable in [OI]63 μm, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that ∼18% of stars retain a gas-rich disk of total mass ∼1 M_(Jupiter) for 1–4 Myr, 1–7% keep such disks for 5–10 Myr, but none are detected beyond 10–20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 μm, [CII]157 μm and CO J = 18 - 17, with detection rates of 20–40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.
    No preview · Article · May 2013 · Publications of the Astronomical Society of the Pacific

Publication Stats

3k Citations
445.14 Total Impact Points

Institutions

  • 2005-2015
    • California Institute of Technology
      • • Jet Propulsion Laboratory
      • • Spitzer Science Center
      Pasadena, California, United States
  • 2011
    • University of Michigan
      • Department of Astronomy
      Ann Arbor, Michigan, United States
  • 2010
    • NASA
      Вашингтон, West Virginia, United States
  • 2003-2008
    • Johns Hopkins University
      • Department of Physics and Astronomy
      Baltimore, MD, United States
  • 2000-2008
    • University of California, Berkeley
      • Department of Astronomy
      Berkeley, CA, United States