Charles Eigenbrot

Genentech, San Francisco, California, United States

Are you Charles Eigenbrot?

Claim your profile

Publications (118)

  • Article · Aug 2016 · ACS Medicinal Chemistry Letters
  • Article · Aug 2016 · Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract] ABSTRACT: Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth in vitro and in vivo. In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK-mTOR-S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK-S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.
    Article · Aug 2016 · Nature Chemical Biology
  • Article · Jul 2016 · Cancer Research
  • [Show abstract] [Hide abstract] ABSTRACT: Activating mutations in protein kinases drive many cancers. While how recurring point mutations affect kinase activity has been described, the effect of in-frame deletions is not well understood. We show that oncogenic deletions within the β3-αC loop of HER2 and BRAF are analogous to the recurrent EGFR exon 19 deletions. We identify pancreatic carcinomas with BRAF deletions mutually exclusive with KRAS mutations. Crystal structures of BRAF deletions reveal the truncated loop restrains αC in an active "in" conformation, imparting resistance to inhibitors like vemurafenib that bind the αC "out" conformation. Characterization of loop length explains the prevalence of five amino acid deletions in BRAF, EGFR, and HER2 and highlights the importance of this region for kinase activity and inhibitor efficacy.
    Article · Mar 2016 · Cancer cell
  • [Show abstract] [Hide abstract] ABSTRACT: The rapid advancement of a series of noncovalent inhibitors of T790M mutants of EGFR is discussed. The optimization of pyridone 1, a nonselective high-throughput screening hit, to potent molecules with high levels of selectivity over wtEGFR and the broader kinome is described herein.
    Article · Dec 2015 · ACS Medicinal Chemistry Letters
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: BTK inhibitor GDC-0834 (1) was found to be rapidly metabolized in human studies, resulting in a suspension of clinical trials. The primary route of metabolism was through cleavage of the acyclic amide bond connecting the terminal tetrahydrobenzothiophene with the central linker aryl ring. SAR studies were focused on reducing metabolic cleavage of this amide, and resulted in the identification of several central aryl linker substituents that conferred improved stability. The most promising substituted aryl linkers were then incorporated into an optimized pyridazinone scaffold, resulting in the identification of lead analog 23, possessing improved potency, metabolic stability and preclinical properties.
    Full-text Article · Nov 2015 · Bioorganic & medicinal chemistry letters
  • [Show abstract] [Hide abstract] ABSTRACT: The treatment of epidermal growth factor receptor (EGFR)-driven non-small cell lung cancers with the T790M resistance mutation remains a significant unmet medical need. We report the identification of 4-aminoindazolyl-dihydrofuro[3,4-d]pyrimidines as non-covalent inhibitors of EGFR, with excellent activity against the T790M resistance double mutants and initial single activating mutants. Using an optimization strategy focused on structure-based design and improving PK properties through metabolite identification, we obtained advanced leads with high oral exposure.
    Article · Nov 2015 · Bioorganic & medicinal chemistry letters
  • [Show abstract] [Hide abstract] ABSTRACT: Due to their increased activity against activating mutants, first-generation epidermal growth factor receptor (EGFR) kinase inhibitors have had remarkable success in treating nonsmall cell lung cancer (NSCLC) patients, but acquired resistance, through a secondary mutation of the gatekeeper residue, means that clinical responses are short-lived. Addressing this unmet medical need requires agents which can target both of the most common double mutants: T790M/L858R (TMLR) and T790M/del(746-750) (TMdel). Herein we describe how a noncovalent double-mutant selective lead compound was optimized using a strategy focused on the structure-guided increase in potency without added lipophilicity or reduction of 3-dimensional character. Following successive rounds of design and synthesis it was discovered that cis-fluoro substitution on 4-hydroxy and 4-methoxy piperidinyl groups provided synergistic, substantial, and specific potency gain either through direct interaction with the enzyme and/or effects on the proximal ligand oxygen atom. Further development of the fluoro-hydroxy piperidine series resulted in the identification of a pair of diastereomers which showed 50-fold enzyme and cell based selectivity for T790M mutants over wild-type EGFR (wtEGFR) in vitro and pathway knock-down in an in vivo xenograft model.
    Article · Oct 2015 · Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract] ABSTRACT: HtrA1 is a trypsin-fold serine protease implicated in the progression of age-related macular degeneration (AMD). Our interest in an antibody therapy to neutralize HtrA1 faces the complication that the target adopts a trimeric arrangement, with three active sites in close proximity. Here we describe antibody 94, obtained from a human antibody phage display library, which forms a distinct macromolecular complex with HtrA1 and inhibits the enzymatic activity of recombinant and native HtrA1 forms. Using biochemical methods and negative staining electron microscopy (EM) we were able to elucidate the molecular composition of the IgG94 and Fab94 complexes and the associated inhibition mechanism. The 246 kDa complex between the HtrA1 catalytic domain trimer (HtrA1_Cat) and Fab94 had a propeller-like organization with one Fab bound peripherally to each protomer. Low-resolution EM structures and epitope mapping indicated that the antibody binds to the surface-exposed loops B and C of the catalytic domain, suggesting an allosteric inhibition mechanism. The HtrA1_Cat:IgG94 complex (636 kDa) is a cage-like structure with three centrally located IgG94 coordinating two HtrA1_Cat trimers and the six active sites pointing into the cavity of the cage. In both complexes, all antigen-recognition regions (paratopes) are found binding one HtrA1 protomer, and all protomers are bound by a paratope, consistent with the complete inhibition of enzyme activity. Therefore, in addition to its potential therapeutic usefulness, antibody 94 establishes a new paradigm of multimeric serine protease inhibition.
    Article · Sep 2015 · Biochemical Journal
  • Brigitte Maurer · Ivan Bosanac · Steven Shia · [...] · Charles Eigenbrot
    [Show abstract] [Hide abstract] ABSTRACT: Interferons-alpha (IFN-α) are the expressed gene products comprising thirteen type I interferons with protein pairwise sequence similarities in the 77-96% range. Three other widely expressed human type I interferons, IFN-β, IFN-κ and IFN-ω have sequences 29-33%, 29-32% and 56-60% similar to the IFN-αs, respectively. Type I interferons act on immune cells by producing subtly different immune-modulatory effects upon binding to the extracellular domains of a heterodimeric cell surface receptor composed of IFNAR1 and IFNAR2, most notably anti-viral effects. IFN-α has been used to treat infection by hepatitis-virus type C (HCV) and a correlation between hyperactivity of IFN-α -induced signaling and systemic lupus erythematosis (SLE), or lupus, has been noted. Anti-IFN-α antibodies including rontalizumab have been under clinical study for the treatment of lupus. To better understand the rontalizumab mechanism of action and specificity, we determined the X-ray crystal structure of the Fab fragment of rontalizumab bound to human IFN-α2 at 3Å resolution and find substantial overlap of the antibody and IFNA2 epitopes on IFN-α2. This article is protected by copyright. All rights reserved. © 2015 The Protein Society.
    Article · Jun 2015 · Protein Science
  • [Show abstract] [Hide abstract] ABSTRACT: The medicinal chemistry community has directed considerable efforts toward the discovery of selective inhibitors of interleukin-2 inducible T-cell kinase (ITK) given its role in T-cell signaling downstream of the T-cell receptor (TCR), and the implications of this target for inflammatory disorders such as asthma. We have previously disclosed a structure- and property-guided lead optimization effort which resulted in the discovery of a new series of tetrahydroindazole-containing selective ITK inhibitors. Herein we disclose further optimization of this series that resulted in further potency improvements, reduced off-target receptor binding liabilities and reduced cytotoxicity. Specifically, we have identified a correlation between the basicity of solubilizing elements in the ITK inhibitors and off-target anti-proliferative effects, which was exploited to reduce cytotoxicity while maintaining kinase selectivity. Optimized analogs were shown to reduce IL-2 and IL-13 production in vivo following oral dosing in mice.
    Article · Apr 2015 · Journal of Medicinal Chemistry
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Starting from benzylpyrimidine 2, molecular modeling and X-ray crystallography were used to design highly potent inhibitors of Interleukin-2 inducible T-cell kinase (ITK). Sulfonylpyridine 4i showed sub-nanomolar affinity against ITK, was selective versus Lck and its activity in the Jurkat cell-based assay was greatly improved over 2. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Full-text Article · Dec 2014 · Bioorganic & Medicinal Chemistry Letters
  • Emily J Hanan · Charles Eigenbrot · Marian C Bryan · [...] · Timothy P Heffron
    [Show abstract] [Hide abstract] ABSTRACT: Activating mutations within the EGFR kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in non-small cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. We describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties.
    Article · Nov 2014 · Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract] ABSTRACT: Optimization of 3-hydroxy-2-(2-chlorophenylthio)-5-(2,6-dichlorophenyl)cyclohex-2-enone using structure-based design strategies resulted in inhibitors with considerable improvement in biochemical potency against human lactate dehydrogenase A (LDHA). These potent inhibitors were typically selective for LDHA over LDHB isoform (4-10 fold) and other structurally related malate dehydrogenases, MDH1 and MDH2 (>500 fold). An X-ray crystal structure of enzymatically most potent molecule bound to LDHA revealed two additional interactions associated with enhanced biochemical potency.
    Article · Nov 2014 · Bioorganic & Medicinal Chemistry Letters
  • [Show abstract] [Hide abstract] ABSTRACT: A series of 3,6-disubstituted dihydropyrones were identified as inhibitors of human lactate dehydrogenase (LDH)-A. Structure activity relationships were explored and a series of 6,6-spiro analogs led to improvements in LDHA potency (IC50 < 350 nM). An X-ray crystal structure of an improved compound bound to human LDHA was obtained and it illustrated additional opportunities to enhance the potency of these compounds, resulting in the identification of 51 (IC50 = 30 nM).
    Article · Oct 2014 · Bioorganic & Medicinal Chemistry Letters
  • Article · Oct 2014 · Cancer Research
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Pharmacokinetic (PK) testing of a humanized (κI, VH3 framework) and affinity matured anti-hepatitis C virus E2-glycoprotein (HCV-E2) antibody (hu5B3.κ1VH3.v3) in rats revealed unexpected fast clearance (34.9 mL/day/kg). This antibody binds to the rat recycling receptor FcRn as expected for a human IgG1 antibody and does not display non-specific binding to baculovirus particles in an assay that is correlated with fast clearance in cynomolgus monkey. The antigen is not expressed in rat so target-dependent clearance does not contribute to PK. Removal of the affinity maturation changes (hu5B3.κ1VH3.v1) did not restore normal clearance. The antibody was re-humanized on a κ4, VH1 framework and the non-affinity matured version (hu5B3.κ4VH1.v1) was shown to have normal clearance (8.5 mL/day/kg). Since the change in framework results in a lower pI, primarily due to more negative charge on the κ4 template, the effect of additional charge variation on antibody PK was tested by incorporating substitutions obtained through phage display affinity maturation of hu5B3.κ1VH3.v1. A variant having a pI of 8.61 gave very fast clearance (140 mL/day/kg) whereas a molecule with pI of 6.10 gave slow clearance (5.8 mL/kg/day). Both antibodies exhibited comparable binding to rat FcRn, but biodistribution experiments showed that the high pI variant was catabolized in liver and spleen. These results suggest antibody charge can have an effect on PK through alterations in antibody catabolism independent of FcRn-mediated recycling. Furthermore, introduction of affinity maturation changes into the lower pI framework yielded a candidate with PK and virus neutralization properties suitable for clinical development.
    Full-text Article · Sep 2014 · mAbs
  • S Jack Lin · Ken C Dong · Charles Eigenbrot · [...] · Daniel Kirchhofer
    [Show abstract] [Hide abstract] ABSTRACT: Trypsin-fold proteases, the largest mammalian protease family, are classified by their primary substrate specificity into one of three categories, trypsin-like, chymotrypsin-like, and elastase-like, based on key structural features of their active site. However, the recently discovered neutrophil serine protease 4 (NSP4, also known as PRSS57) presents a paradox: NSP4 exhibits a trypsin-like specificity for cleaving substrates after arginine residues, but it bears elastase-like specificity determining residues in the active site. Here we show that NSP4 has a fully occluded S1 pocket and that the substrate P1-arginine adopts a noncanonical "up" conformation stabilized by a solvent-exposed H-bond network. This uncommon arrangement, conserved in all NSP4 orthologs, enables NSP4 to process substrates after both arginine as well as post-translationally modified arginine residues, such as methylarginine and citrulline. These findings establish a distinct paradigm for substrate recognition by a trypsin-fold protease and provide insights into the function of NSP4.
    Article · Aug 2014 · Structure
  • Kirk D Robarge · Wendy Lee · Charles Eigenbrot · [...] · Matthew Baumgardner
    [Show abstract] [Hide abstract] ABSTRACT: Use of the tools of SBDD including crystallography led to the discovery of novel and potent 6,5 heterobicyclic MEKi's [J. Med. Chem.2012, 55, 4594]. The core change from a 5,6 heterobicycle to a 6,5 heterobicycle was driven by the desire for increased structural diversity and aided by the co-crystal structure of G-925 [J. Med. Chem.2012, 55, 4594]. The key design feature was the shift of the attachment of the five-membered heterocyclic ring towards the B ring while maintaining the key hydroxamate and anilino pharamcophoric elements in a remarkably similar position as in G-925. From modelling, changing the connection point of the five membered ring heterocycle placed the H-bond accepting nitrogen within a good distance and angle to the Ser212 [J. Med. Chem.2012, 55, 4594]. The resulting novel 6,5 benzoisothiazole MEKi G-155 exhibited improved potency versus aza-benzofurans G-925 and G-963 but was a potent inhibitor of cytochrome P450's 2C9 and 2C19. Lowering the logD by switching to the more polar imidazo[1,5-a] pyridine core significantly diminished 2C9/2C19 inhibition while retaining potency. The imidazo[1,5-a] pyridine G-868 exhibited increased potency versus the starting point for this work (aza-benzofuran G-925) leading to deprioritization of the azabenzofurans. The 6,5-imidazo[1,5-a] pyridine scaffold was further diversified by incorporating a nitrogen at the 7 position to give the imidazo[1,5-a] pyrazine scaffold. The introduction of the C7 nitrogen was driven by the desire to improve metabolic stability by blocking metabolism at the C7 and C8 positions (particularly the HLM stability). It was found that improving on G-868 (later renamed GDC-0623) required combining C7 nitrogen with a diol hydroxamate to give G-479. G-479 with polarity distributed throughout the molecule was improved over G-868 in many aspects.
    Article · Aug 2014 · Bioorganic & Medicinal Chemistry Letters

Publication Stats

6k Citations

Institutions

  • 2001
    • Genentech
      • Department of Protein Engineering
      San Francisco, California, United States
  • 1991
    • University of California, San Francisco
      • Department of Pharmaceutical Chemistry
      San Francisco, California, United States