Barry J Pogson

Australian National University, Canberra, Australian Capital Territory, Australia

Are you Barry J Pogson?

Claim your profile

Publications (119)

  • Kai Xun Chan · Peter D. Mabbitt · Su Yin Phua · [...] · Barry J. Pogson
    [Show abstract] [Hide abstract] ABSTRACT: Intracellular signaling during oxidative stress is complex, with organelle-to-nucleus retrograde communication pathways ill-defined or incomplete. Here we identify the 3'-phosphoadenosine 5'-phosphate (PAP) phosphatase SAL1 as a previously unidentified and conserved oxidative stress sensor in plant chloroplasts. Arabidopsis thaliana SAL1 (AtSAL1) senses changes in photosynthetic redox poise, hydrogen peroxide, and superoxide concentrations in chloroplasts via redox regulatory mechanisms. AtSAL1 phosphatase activity is suppressed by dimerization, intramolecular disulfide formation, and glutathionylation, allowing accumulation of its substrate, PAP, a chloroplast stress retrograde signal that regulates expression of plastid redox associated nuclear genes (PRANGs). This redox regulation of SAL1 for activation of chloroplast signaling is conserved in the plant kingdom, and the plant protein has evolved enhanced redox sensitivity compared with its yeast ortholog. Our results indicate that in addition to sulfur metabolism, SAL1 orthologs have evolved secondary functions in oxidative stress sensing in the plant kingdom.
    Article · Jul 2016 · Proceedings of the National Academy of Sciences
  • Source
    Melanie Carmody · Peter Alexander Crisp · Stefano D'Alessandro · [...] · Barry J. Pogson
    Full-text Dataset · Jul 2016
  • Xin Hou · John Rivers · Patricia León · [...] · Barry J Pogson
    [Show abstract] [Hide abstract] ABSTRACT: In plants, carotenoids are essential for photosynthesis and photoprotection. However, carotenoids are not the end products of the pathway; apocarotenoids are produced by carotenoid cleavage dioxygenases (CCDs) or non-enzymatic processes. Apocarotenoids are more soluble or volatile than carotenoids but they are not simply breakdown products, as there can be modifications post-cleavage and their functions include hormones, volatiles, and signals. Evidence is emerging for a class of apocarotenoids, here referred to as apocarotenoid signals (ACSs), that have regulatory roles throughout plant development beyond those ascribed to abscisic acid (ABA) and strigolactone (SL). In this context we review studies of carotenoid feedback regulation, chloroplast biogenesis, stress signaling, and leaf and root development providing evidence that apocarotenoids may fine-tune plant development and responses to environmental stimuli.
    Article · Jun 2016 · Trends in Plant Science
  • Source
    Melanie Carmody · Peter Alexander Crisp · Stefano D'Alessandro · [...] · Barry J. Pogson
    [Show abstract] [Hide abstract] ABSTRACT: Distinct ROS signaling pathways initiated by singlet oxygen or superoxide and hydrogen peroxide (H2O2) have been attributed to either cell death or acclimation, respectively. Recent studies have revealed that more complex antagonistic and synergistic relationships exist within and between these pathways. As specific chloroplastic ROS signals are difficult to study, rapid systemic signaling experiments using localized high light (HL) stress or ROS treatments were used in this study to uncouple signals required for direct HL and ROS perception and distal systemic acquired acclimation (SAA). A qPCR approach was chosen to determine local perception and distal signal reception. Analysis of a thylakoidal ascorbate peroxidase mutant (tapx), the 1O2-retrograde signaling double mutant (ex1/ex2), and an apoplastic signaling double mutant (rbohD/F) revealed that tAPX and EXECUTER 1 are required for both HL and systemic acclimation stress perception. Apoplastic membrane-localized RBOHs were required for systemic spread of the signal but not for local signal induction in directly stressed tissues. Endogenous ROS treatments revealed a very strong systemic response induced by a localized 1 hour induction of 1O2 using the conditional flu mutant. A qPCR time course of 1O2 induced systemic marker genes in directly and indirectly connected leaves revealed a direct vascular connection component of both immediate and longer term SAA signaling responses. These results reveal the importance of an EXECUTER-dependent 1O2 retrograde signal for both local and long distance RBOH-dependent acclimation signaling that is distinct from other HL signaling pathways, and that direct vascular connections have a role in spatial-temporal SAA induction.
    Full-text Article · Jun 2016 · Plant physiology
  • Source
    Peter A Crisp · Diep Ganguly · Steven R Eichten · [...] · Barry J Pogson
    [Show abstract] [Hide abstract] ABSTRACT: Plants grow in dynamic environments where they can be exposed to a multitude of stressful factors, all of which affect their development, yield, and, ultimately, reproductive success. Plants are adept at rapidly acclimating to stressful conditions and are able to further fortify their defenses by retaining memories of stress to enable stronger or more rapid responses should an environmental perturbation recur. Indeed, one mechanism that is often evoked regarding environmental memories is epigenetics. Yet, there are relatively few examples of such memories; neither is there a clear understanding of their duration, considering the plethora of stresses in nature. We propose that this field would benefit from investigations into the processes and mechanisms enabling recovery from stress. An understanding of stress recovery could provide fresh insights into when, how, and why environmental memories are created and regulated. Stress memories may be maladaptive, hindering recovery and affecting development and potential yield. In some circumstances, it may be advantageous for plants to learn to forget. Accordingly, the recovery process entails a balancing act between resetting and memory formation. During recovery, RNA metabolism, posttranscriptional gene silencing, and RNA-directed DNA methylation have the potential to play key roles in resetting the epigenome and transcriptome and in altering memory. Exploration of this emerging area of research is becoming ever more tractable with advances in genomics, phenomics, and high-throughput sequencing methodology that will enable unprecedented profiling of high-resolution stress recovery time series experiments and sampling of large natural populations.
    Full-text Article · Feb 2016 · Science Advances
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the mips1 mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically-active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3'-phosphoadenosine 5'-phosphate (PAP), a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5'-3' exoribonucleases (XRNs). Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response.
    Full-text Article · Jan 2016 · Plant physiology
  • Kai Xun Chan · Su Yin Phua · Peter Crisp · [...] · Barry J Pogson
    [Show abstract] [Hide abstract] ABSTRACT: The chloroplast can act as an environmental sensor, communicating with the cell during biogenesis and operation to change the expression of thousands of proteins. This process, termed retrograde signaling, regulates expression in response to developmental cues and stresses that affect photosynthesis and yield. Recent advances have identified many signals and pathways-including carotenoid derivatives, isoprenes, phosphoadenosines, tetrapyrroles, and heme, together with reactive oxygen species and proteins-that build a communication network to regulate gene expression, RNA turnover, and splicing. However, retrograde signaling pathways have been viewed largely as a means of bilateral communication between organelles and nuclei, ignoring their potential to interact with hormone signaling and the cell as a whole to regulate plant form and function. Here, we discuss new findings on the processes by which organelle communication is initiated, transmitted, and perceived, not only to regulate chloroplastic processes but also to intersect with cellular signaling and alter physiological responses. Expected final online publication date for the Annual Review of Plant Biology Volume 67 is April 29, 2016. Please see for revised estimates.
    Article · Jan 2016 · Annual Review of Plant Biology
  • Source
    Full-text Article · Jan 2016 · The Arabidopsis Book
  • Ryan P McQuinn · James J Giovannoni · Barry J Pogson
    [Show abstract] [Hide abstract] ABSTRACT: Carotenoids are a class of isoprenoids synthesized almost exclusively in plants involved in a myriad of roles including the provision of flower and fruit pigmentation for the attraction of pollinators and seed dispersing organisms. While carotenoids are essential throughout plant development, they are also extremely important in human diets providing necessary nutrition and aiding in the prevention of various cancers, age-related diseases and macular degeneration. Utilization of multiple plant models systems (i.e. Arabidopsis; maize; and tomato) has provided a comprehensive framework detailing the regulation of carotenogenesis throughout plant development covering all levels of genetic regulation from epigenetic to post-translational modifications. That said, the understanding of how carotenoids self-regulate remains fragmented. Recent reports demonstrate the potential influence of carotenoid-cleavage products (apocarotenoids) as signaling molecules regulating carotenoid biosynthesis in addition to various aspects of plants development (i.e. leaf and root development). This review highlights recent advances in carotenogenic regulation and insights into potential roles of novel apocarotenoids in plants. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Article · Aug 2015 · Current opinion in plant biology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Starch phosphate ester content is known to alter the physicochemical properties of starch, including its susceptibility to degradation. Previous work producing wheat (Triticum aestivum) with down-regulated glucan, water dikinase, the primary gene responsible for addition of phosphate groups to starch, in a grain-specific manner found unexpected phenotypic alteration in grain and growth. Here, we report on further characterization of these lines focussing on mature grain and early growth. We find that coleoptile length has been increased in these transgenic lines independently of grain size increases. No changes in starch degradation rates during germination could be identified, or any major alteration in soluble sugar levels that may explain the coleoptile growth modification. We identify some alteration in hormones in the tissues in question. Mature grain size is examined, as is Hardness Index and starch conformation. We find no evidence that the increased growth of coleoptiles in these lines is connected to starch conformation or degradation or soluble sugar content and suggest these findings provide a novel means of increasing coleoptile growth and early seedling establishment in cereal crop species. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
    Full-text Article · May 2015 · Plant Biotechnology Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABAaccumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5expression, the production of neoxanthin, an ABA biosynthesis precursor, andABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.
    Full-text Article · Apr 2015 · The Plant Cell
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Main conclusion: The orange head phenotype of Br - or resulted from a large insertion in carotenoid isomerase (BrCRTISO) . Comparative transcriptome analysis revealed that the mutation affected the expression of abundant transcription factor genes. A new orange trait-specific marker was developed for marker-assisted breeding. Orange head leaves are a desirable quality trait for Chinese cabbage. Our previous fine mapping identified BrCRTISO as the Br-or candidate gene for the orange Chinese cabbage mutant. Here, we examined the BrCRTISO gene from white and orange head Chinese cabbage. While BrCRTISO from the white control plant was able to complement the Arabidopsis Atcrtiso mutant phenotype, Brcrtiso with a large insertion from the orange head Chinese cabbage failed to rescue the Arabidopsis mutant phenotype. The results show that Brcrtiso was non-functional, concomitant with the accumulation of prolycopene in Br-or to yield orange head. Comparative transcriptome analysis by RNA-seq identified 372 differentially expressed genes between the control and Br-or mutant using two near-isogenic lines with white and orange inner leaves. The mutation in BrCRTISO specifically affected many genes in the functional groups involved in RNA, protein, transport, and signaling. Particularly, expressions of many transcription factor genes were dramatically altered in Br-or, suggesting a potential role of BrCRTISO or carotenoid metabolites in affecting transcription. A novel co-dominant gene-specific marker was developed that co-segregated with orange color phenotype and would be useful for marker-assisted selection with enhanced selection efficiency. Our study provides new insights into understanding of the molecular basis of Br-or in mediating head leaf color and depicts a global view of the effect of BrCRTISO on cellular processes in plant. It also provides a molecular tool to accelerate breeding new Chinese cabbage cultivars with unique health quality and visual appearance.
    Full-text Article · Feb 2015 · Planta
  • Source
    Barry J Pogson · Diep Ganguly · Verónica Albrecht-Borth
    [Show abstract] [Hide abstract] ABSTRACT: In recent years many advances have been made to obtain insight into chloroplast biogenesis and development. In plants several plastids types exist such as the proplastid (which is the progenitor of all plastids), leucoplasts (group of colourless plastids important for storage including elaioplasts (lipids), amyloplasts (starch) or proteinoplasts (proteins)), chromoplasts (yellow to orange-coloured due to carotenoids, in flowers or in old leaves as gerontoplasts), and the green chloroplasts. Chloroplasts are indispensable for plant development; not only by performing photosynthesis and thus rendering the plant photoautotrophic, but also for biochemical processes (which in some instances can also take place in other plastids types), such as the synthesis of pigments, lipids, and plant hormones and sensing environmental stimuli. Although we understand many aspects of these processes there are gaps in our understanding of the establishment of functional chloroplasts and their regulation. Why is that so? Even though chloroplast function is comparable in all plants and most of the algae, ferns and moss, detailed analyses have revealed many differences, specifically with respect to its biogenesis. As an update to our prior review on the genetic analysis of chloroplast biogenesis and development [1] herein we will focus on recent advances in Angiosperms (monocotyledonous and dicotyledonous plants) that provide novel insights and highlight the challenges and prospects for unravelling the regulation of chloroplast biogenesis specifically during the establishment of the young plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2015. Published by Elsevier B.V.
    Full-text Article · Feb 2015 · Biochimica et Biophysica Acta (BBA) - Bioenergetics
  • Source
    Nazia Nisar · Li Li · Shan Lu · [...] · Barry J Pogson
    [Show abstract] [Hide abstract] ABSTRACT: Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. They are colorants and critical components of the human diet as antioxidants and provitamin A. In this review, we summarize current knowledge of the genes and enzymes involved in carotenoid metabolism and describe recent progress in understanding the regulatory mechanisms underlying carotenoid accumulation. The importance of the specific location of carotenoid enzyme metabolons and plastid types as well as of carotenoid-derived signals is discussed. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
    Full-text Article · Jan 2015 · Molecular Plant
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Plant development is regulated by external and internal factors such as light and chloroplast development. A revertant of the Arabidopsis thaliana (L.) Heyhn. chloroplast biogenesis mutant snowy cotyledon 3 (sco3-1) was isolated partially recovering the impaired chloroplast phenotype. The mutation was identified in the Phytochrome B (PhyB) gene and is a result of an amino acid change within the PAS repeat domain required for light-induced nuclear localisation. An independent phyB-9 mutation was crossed into sco3-1 mutants, resulting in the same partial reversion of sco3-1. Further analysis demonstrated that SCO3 and PhyB influence the greening process of seedlings and rosette leaves, embryogenesis, rosette formation and flowering. Interestingly, the functions of these proteins are interwoven in various ways, suggesting a complex genetic interaction. Whole-transcriptome profiling of sco3-1phyB-9 indicated that a completely distinct set of genes was differentially regulated in the double mutant compared with the single sco3-1 or phyB-9 mutants. Thus, we hypothesise that PhyB and SCO3 genetically suppress each other in plant and chloroplast development.
    Full-text Article · Jan 2015 · Functional Plant Biology
  • Source
    Christopher Ian Cazzonelli · Nazia Nisar · Andrea C Roberts · [...] · Barry James Pogson
    [Show abstract] [Hide abstract] ABSTRACT: Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3), which encodes a calmodulin-like protein (CML12). The gene neighboring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.
    Full-text Article · Oct 2014 · Frontiers in Plant Science
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: In addition to acting as photoprotective compounds, carotenoids also serve as precursors in the biosynthesis of several phytohormones and proposed regulatory signals. Here, we report a signaling process derived from carotenoids that regulates early chloroplast and leaf development. Biosynthesis of the signal depends on ζ-carotene desaturase activity encoded by the ζ-CAROTENE DESATURASE (ZDS)/CHLOROPLAST BIOGENESIS5 (CLB5) gene in Arabidopsis thaliana. Unlike other carotenoid-deficient plants, zds/clb5 mutant alleles display profound alterations in leaf morphology and cellular differentiation as well as altered expression of many plastid- and nucleus-encoded genes. The leaf developmental phenotypes and gene expression alterations of zds/clb5/spc1/pde181 plants are rescued by inhibitors or mutations of phytoene desaturase, demonstrating that phytofluene and/or ζ-carotene are substrates for an unidentified signaling molecule. Our work further demonstrates that this signal is an apocarotenoid whose synthesis requires the activity of the carotenoid cleavage dioxygenase CCD4.
    Full-text Article · Jun 2014 · The Plant Cell
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: In plants, continuous formation of lateral roots (LRs) facilitates efficient exploration of the soil environment. Roots can maximize developmental capacity in variable environmental conditions through establishment of sites competent to form LRs. This LR prepattern is established by a periodic oscillation in gene expression near the root tip. The spatial distribution of competent (prebranch) sites results from the interplay between this periodic process and primary root growth; yet, much about this oscillatory process and the formation of prebranch sites remains unknown. We find that disruption of carotenoid biosynthesis results in seedlings with very few LRs. Carotenoids are further required for the output of the LR clock because inhibition of carotenoid synthesis also results in fewer sites competent to form LRs. Genetic analyses and a carotenoid cleavage inhibitor indicate that an apocarotenoid, distinct from abscisic acid or strigolactone, is specifically required for LR formation. Expression of a key carotenoid biosynthesis gene occurs in a spatially specific pattern along the root's axis, suggesting spatial regulation of carotenoid synthesis. These results indicate that developmental prepatterning of LRs requires an uncharacterized carotenoid-derived molecule. We propose that this molecule functions non-cell-autonomously in establishment of the LR prepattern.
    Full-text Article · Mar 2014 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Agriculture requires a second green revolution to provide increased food, fodder, fiber, fuel and soil fertility for a growing population while being more resilient to extreme weather on finite land, water, and nutrient resources. Advances in phenomics, genomics and environmental control/sensing can now be used to directly select yield and resilience traits from large collections of germplasm if software can integrate among the technologies. Traits could be Captured throughout development and across environments from multi-dimensional phenotypes, by applying Genome Wide Association Studies (GWAS) to identify causal genes and background variation and functional structural plant models (FSPMs) to predict plant growth and reproduction in target environments. TraitCapture should be applicable to both controlled and field environments and would allow breeders to simulate regional variety trials to pre-select for increased productivity under challenging environments.
    Full-text Article · Mar 2014 · Current Opinion in Plant Biology
  • [Show abstract] [Hide abstract] ABSTRACT: Cellular auxin homeostasis controls many aspects of plant growth, organogenesis and development. The existence of intracellular auxin transport mediated by endoplasmic reticulum (ER)-localized PIN5, PIN6 and PIN8 proteins is a relatively recent discovery shaping a new era in understanding auxin-mediated growth processes. Here we summarize the importance of PIN6 in mediating intracellular auxin transport during root formation, leaf vein patterning and nectary production. While, it was previously shown that PIN6 was strongly expressed in rosette leaf cell types important in vein formation, here we demonstrate by use a PIN6 promoter-reporter fusion, that PIN6 is also preferentially expressed in the vasculature of the primary root, cotyledons, cauline leaves, floral stem, sepals and the main transmitting tract of the reproductive silique. The strong, vein- specific reporter gene expression patterns enabled by the PIN6 promoter emphasizes that transcriptional control is likely to be a major regulator of PIN6 protein levels, during vasculature formation, and supports the need for ER-localized PIN proteins in selecting specialized cells for vascular function in land plants.
    Article · Jan 2014 · Plant signaling & behavior

Publication Stats

6k Citations


  • 2000-2009
    • Australian National University
      • Division of Plant Sciences
      Canberra, Australian Capital Territory, Australia
  • 2007
    • Humboldt-Universität zu Berlin
      Berlín, Berlin, Germany
  • 2005
    • Australian Society for Biochemistry and Molecular Biology
      Canberra, Australian Capital Territory, Australia
  • 2001
    • Arizona State University
      Tempe, Arizona, United States