Barbara Emde

Heinrich-Heine-Universität Düsseldorf, Düsseldorf, North Rhine-Westphalia, Germany

Are you Barbara Emde?

Claim your profile

Publications (2)6.2 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal nitric oxide-I is constitutively expressed in ≈2% of cortical interneurons and is co-localized with γ-amino butric acid, somatostatin or neuropeptide Y. These interneurons additionally express high amounts of glutamate receptors which mediate the glutamate-induced hyperexcitation following cerebral injury, under these conditions nitric oxide production increases contributing to a potentiation of oxidative stress. However, perilesional nitric oxide synthase-I containing neurons are known to be resistant to ischemic and excitotoxic injury. In vitro studies show that nitrosonium and nitroxyl ions inactivate N-methyl-d-aspartate receptors, resulting in neuroprotection. The question remains of how these cells are protected against their own high intracellular nitric oxide production after activation. In this study, we investigated immunocytochemically nitric oxide synthase-I containing cortical neurons in rats after unilateral, cortical photothrombosis. In this model of focal ischemia, perilesional, constitutively nitric oxide synthase-I containing neurons survived and co-expressed antioxidative enzymes, such as manganese- and copper-zinc-dependent superoxide dismutases, heme oxygenase-2 and cytosolic glutathione peroxidase. This enhanced antioxidant expression was accompanied by a strong perinuclear presence of the antiapoptotic Bcl-2 protein. No colocalization was detectable with upregulated heme oxygenase-1 in glia and the superoxide and prostaglandin G2-producing cyclooxygenase-2 in neurons. These results suggest that nitric oxide synthase-I containing interneurons are protected against intracellular oxidative damage and apoptosis by Bcl-2 and several potent antioxidative enzymes. Since nitric oxide synthase-I positive neurons do not express superoxide-producing enzymes such as cyclooxygenase-1, xanthine oxidase and cyclooxygenase-2 in response to injury, this may additionally contribute to their resistance by reducing their internal peroxynitrite, H2O2-formation and caspase activation.
    No preview · Article · Oct 2001 · Journal of Chemical Neuroanatomy
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral ischemic injury results in the liberation of heme from degenerating heme-containing proteins. The neurotoxic heme is usually detoxified by the constitutive heme oxygenase-2 (HO-2) and its inducible isoform HO-1(heat shock protein 32) resulting in the formation of biliverdin which becomes reduced to bilirubin, carbon monoxide (CO), and iron. Biliverdin and bilirubin have antioxidative properties whereas CO is discussed as a signaling molecule. Iron if it remains free could catalyze Haber--Weiss and Fenton reactions causing the formation of highly toxic radicals. We have studied the alterations of cerebral HO-2 and HO-1 in relation to iron accumulations after defined cortical photothrombosis within the hindlimb area of the rat. HO-2 immunohistochemistry showed that the number of HO-2-positive neurons in most perilesional regions remained constant. However, much stronger systemic immunoreactivity for HO-2 was observed between days 1 and 7 postlesion. For HO-1 a systemic increase of immunoreactivity occurred also between days 1 and 7. In addition HO-1-positive astrocytes and microglia appeared as early as 4 h postlesion and increased up to day 3 followed by a sharp decline toward day 14 within the injured hemisphere. HO-1-positive astrocytes and microglia occurred in ipsilateral cortex, corpus callosum, hippocampus, striatum, and thalamic nuclei. Additionally an increase of HO-1 in myelin-associated globulin-positive oligodendrocytes was found in ipsilateral and contralateral cortex. Next to the lesion iron accumulation occurred after day 3 and increased strongly toward day 14 at times when HO-1 and -2 had decreased, suggesting that HO activity does not directly contribute to postlesional iron deposition.
    No preview · Article · Apr 2001 · Experimental Neurology