Anastassios C Papageorgiou

Åbo Akademi University, Turku, Varsinais-Suomi, Finland

Are you Anastassios C Papageorgiou?

Claim your profile

Publications (88)293.85 Total impact

  • No preview · Article · Dec 2015 · Biochemical Journal
  • Nirmal Poudel · Jens Pfannstiel · Oliver Simon · Nadine Walter · Anastassios C Papageorgiou · Dieter Jendrossek
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas aeruginosa is one of only a few Pseudomonas species that are able to use acyclic monoterpenoids such as citronellol and citronellate as carbon and energy source. This is achieved by the acyclic terpene utilization pathway (Atu) that includes at least six enzymes (AtuA, B, CF, D, E, G) and is coupled to a functional leucine-isovalerate utilization (Liu) pathway. Here, quantitative proteome analysis was performed to elucidate the terpene metabolism of P. aeruginosa. The proteomics survey identified 187 proteins, including AtuA-AtuG and LiuA-LiuE, which were increased in abundance in the presence of citronellate. In particular, two hydratases, AtuE and the PA4330 gene product, out of more that a dozen predicted in the P. aeruginosa proteome, showed an increased abundance in the presence of citronellate. AtuE (isohexenyl glutaconyl-CoA hydratase; EC most likely catalyzes the hydration of the unsaturated distal double bond in isohexenyl-glutaconyl-CoA thioester to yield 3-hydroxy-3-isohexenyl-glutaryl-CoA. Determination of the crystal structure of AtuE at 2.13-Å resolution revealed a fold similar to that found in the hydratase (crotonase) superfamily and provided insights in the nature of the active site. The AtuE active-site architecture showed a significantly broader cavity compared to other crotonase superfamily members in agreement with the need to accommodate the branched isoprenoid unit of terpenes. Glu139 was identified as potential catalytic residue while the backbone -NH groups of Gly116 and Gly68 are likely to form an oxyanion hole. The present work will deepen the understanding of terpene metabolism in Pseudomonas and may serve as a basis to develop new strategies for biotechnological production of terpenoids. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
    No preview · Article · Jul 2015 · Applied and Environmental Microbiology
  • Anastassios C. Papageorgiou · Duochuan Li
    [Show abstract] [Hide abstract]
    ABSTRACT: A -1,3-glucanase from the thermophilic fungus Chaetomium thermophilum was overexpressed in Pichia pastoris, purified and crystallized in the presence of 1.8 M sodium/potassium phosphate pH 6.8 as a precipitant. Data to 2.0
    No preview · Article · Jun 2015 · Acta Crystallographica Section F: Structural Biology Communications
  • Nikolaos E Labrou · Anastassios C Papageorgiou · Ourania Pavli · Emmanouil Flemetakis
    [Show abstract] [Hide abstract]
    ABSTRACT: Glutathione transferases (GSTs) represent a major group of detoxification enzymes. All plants possess multiple cytosolic GSTs, each of which displays distinct catalytic as well as non-catalytic binding properties. The progress made in recent years in the fields of genomics, proteomics and protein crystallography of GSTs, coupled with studies on their molecular evolution, diversity and substrate specificity has provided new insights into the function of these enzymes. In plants, GSTs appear to be implicated in an array of different functions, including detoxification of xenobiotics and endobiotics, primary and secondary metabolism, stress tolerance, and cell signalling. This review focuses on plant GSTome and attempts to give an overview of its catalytic and functional role in xenome and plant stress regulatory networks. Copyright © 2015 Elsevier Ltd. All rights reserved.
    No preview · Article · Jan 2015 · Current Opinion in Biotechnology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The plant tau class glutathione transferases (GSTs) play important roles in biotic and abiotic stress tolerance in crops and weeds. In this study, we systematically examined the catalytic and structural features of a GST isoenzyme from Glycine max (GmGSTU10-10). GmGSTU10-10 is a unique isoenzyme in soybean that is specifically expressed in response to biotic stress caused by soybean mosaic virus (SMV) infections. GmGSTU10-10 was cloned, expressed in E. coli, purified and characterized. The results showed that GmGSTU10-10 catalyzes several different reactions and exhibits wide substrate specificity. Of particular importance is the finding that the enzyme shows high antioxidant catalytic function and acts as hydroperoxidase. In addition, its Km for GSH is significant lower, compared to other plant GSTs, suggesting that GmGSTU10-10 is able to perform efficient catalysis under conditions where the concentration of reduced glutathione is low (e.g. oxidative stress). The crystal structure of GmGSTU10-10 was solved by molecular replacement at 1.6Å resolution in complex with glutathione sulfenic acid (GSOH). Structural analysis showed that GmGSTU10-10 share the same overall fold and domain organization as other plant cytosolic GSTs, however major variations were identified in helix H9 and the upper part of helix H4 that affect the size of the active site pockets, substrate recognition and the catalytic mechanism. The results of the present study provide new information into GST diversity and give further insights into the complex regulation and enzymatic functions of this plant gene superfamily. Copyright © 2014. Published by Elsevier B.V.
    Full-text · Article · Dec 2014 · Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics
  • Teemu Haikarainen · Clemence Frioux · Li-Qing Zhnag · Duo-Chuan Li · Anastassios C Papageorgiou
    [Show abstract] [Hide abstract]
    ABSTRACT: A manganese superoxide dismutase from the thermophilic fungus Chaetomium thermophilum (CtMnSOD) was expressed in Pichia pastoris and purified to homogeneity. Its optimal temperature was 60°C with approximately 75% of its activity retained after incubation at 70°C for 60 min. Recombinant yeast cells carrying Chaetomium thermophilum mnsod gene exhibited higher stress resistance to salt and oxidative stress-inducing agents than control yeast cells. In an effort to provide structural insights, CtMnSOD was crystallized and its structure was determined at 2.0 Å resolution. The overall architecture of CtMnSOD was found similar to other MnSODs with highest structural similarities obtained against a MnSOD from the thermophilic fungus Aspergillus fumigatus. In order to explain its thermostability, structural and sequence analysis of CtMnSOD with other MnSODs was carried out. An increased number of charged residues and an increase in the number of intersubunit salt bridges and the Thr:Ser ratio were identified as potential reasons for the thermostability of CtMnSOD.
    No preview · Article · Dec 2013 · Biochimica et Biophysica Acta
  • Dieter Jendrossek · Siska Hermawan · Bishwa Subedi · Anastassios C Papageorgiou
    [Show abstract] [Hide abstract]
    ABSTRACT: Five amino acids (Y105, Y176, Y189, Y189, W207) that constitute the substrate binding site of PHB depolymerase PhaZ7 were identified. All residues are located at a single surface-exposed location of PhaZ7. Exchange of these amino acids by less hydrophobic, hydrophilic or negatively charged residues reduced binding of PhaZ7 to PHB. Modifications of other residues at the PhaZ7 surface (F9, Y66, Y103, Y124, Y169, Y172, Y173, F198, Y203, Y204, F251, W252) had no effect on substrate binding. The PhaZ7 wild type protein, three muteins with single amino acid exchanges (Y105A, Y105E, Y190E), a PhaZ7 variant with deletion of residues 202-208, and PhaZ7 in which the active site serine had been replaced by alanine (S136A) were crystallized and their structures were determined at 1.6 to 2.0 Å resolution. The structures were almost identical but revealed flexibility of some regions. Structural analysis of PhaZ7 (S136A) with bound 3-hydroxybutyrate tetramer showed that the substrate binds in a cleft that is composed of Y105, Y176, Y189 and Y190 and thus confirmed the data obtained by site-directed mutagenesis. To the best of our knowledge this is the first example in which the substrate binding site of a PHB depolymerase is documented at a molecular and structural level.
    No preview · Article · Sep 2013 · Molecular Microbiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Streptococcus pyogenes protein 0843 (Spy0843) is a recently identified protein with a potential adhesin function. Sequence analysis has shown that Spy0843 contains two leucine-rich repeat (LRR) domains that mediate interactions with the gp340 receptor. Here, the C-terminal LRR domain was overexpressed in Escherichia coli, purified and crystallized in the presence of 1.7-1.8 M ammonium sulfate pH 7.4 as precipitant. Data were collected from a single crystal to 1.59 Å resolution at 100 K at a synchrotron-radiation source. The crystal was found to belong to space group I41, with unit-cell parameters a = b = 121.4, c = 51.5 Å and one molecule in the asymmetric unit. Elucidation of the crystal structure will provide insights into the interactions of Spy0843 with the gp340 receptor and a better understanding of the role of Spy0843 in streptococcal infections.
    Full-text · Article · May 2013 · Acta Crystallographica Section F Structural Biology and Crystallization Communications
  • Pradeep Battula · Anatoly P Dubnovitsky · Anastassios C Papageorgiou
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoserine aminotransferase is a vitamin B6-dependent enzyme that catalyzes the reversible conversion of 3-phosphohydroxypyruvate to L-phosphoserine using glutamate as an amine donor. In an effort to gain insight into the substrate-recognition mechanism of the enzyme, crystal structures of Bacillus alcalophilus phosphoserine aminotransferase in the presence or absence of L-phosphoserine were determined to resolutions of 1.5 and 1.6 Å, respectively. Local conformational changes induced upon substrate binding were identified. However, in contrast to other aminotransferases, no domain or subunit movements were observed. Two Arg residues (Arg42 and Arg328) and two His residues (His41 and His327) were found to form a tight binding site for the phosphate group of L-phosphoserine. Comparison with Escherichia coli phosphoserine aminotransferase in complex with the substrate analogue α-methylglutamate revealed more extensive structural changes in the case of L-phosphoserine binding. Based on the structural analysis, the flexibility of Arg328 is proposed to be critical for substrate recognition.
    No preview · Article · May 2013 · Acta Crystallographica Section D Biological Crystallography
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glutathione transferases (GSTs; EC form a group of multifunctional enzymes that are involved in phase II cellular detoxification mechanism. Here, screening of the inhibition potency of a wide range of pesticides toward selected human GST isoenzymes (hGSTA1-1, hGSTP1-1, hGSTT2-2 and hGSTO1-1) was carried out. hGSTA1-1 was found more susceptible to inhibition by pesticides than other isoenzymes. The insecticides dieldrin and spiromesifen were identified as potent reversible inhibitors toward hGSTA1-1 with IC50 values equal to 17.9 ± 1.7 μM and 12.1 ± 3.4 μM, respectively. Based on in silico docking analysis and kinetic inhibition studies it was concluded that dieldrin and spiromesifen bind specifically to the enzyme presumably at a distinct position that partially overlaps with both the G- and H-site. The ability of dieldrin and spiromesifen to inhibit hGSTA1-1 activity was exploited for the development of analytical quantification assays for these two pesticides. Linear calibration curves were obtained for dieldrin and spiromesifen, with useful concentration in the range of 0–10 μM. The reproducibility of the assay response, expressed by relative standard deviation, was in the order of 4.1% (N = 28). The method was successfully applied to the determination of these pesticides in real water samples without sample preparation steps.
    No preview · Article · Sep 2012 · Journal of Molecular Catalysis B Enzymatic
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell migration is a fundamental biological function, critical during development and regeneration, whereas deregulated migration underlies neurological birth defects and cancer metastasis. MARCKS-like protein 1 (MARCKSL1) is widely expressed in nervous tissue, where, like Jun N-terminal protein kinase (JNK), it is required for neural tube formation, though the mechanism is unknown. Here we show that MARCKSL1 is directly phosphorylated by JNK on C-terminal residues (S120, T148, and T183). This phosphorylation enables MARCKSL1 to bundle and stabilize F-actin, increase filopodium numbers and dynamics, and retard migration in neurons. Conversely, when MARCKSL1 phosphorylation is inhibited, actin mobility increases and filopodium formation is compromised whereas lamellipodium formation is enhanced, as is cell migration. We find that MARCKSL1 mRNA is upregulated in a broad range of cancer types and that MARCKSL1 protein is strongly induced in primary prostate carcinomas. Gene knockdown in prostate cancer cells or in neurons reveals a critical role for MARCKSL1 in migration that is dependent on the phosphorylation state; phosphomimetic MARCKSL1 (MARCKSL1S120D,T148D,T183D) inhibits whereas dephospho-MARCKSL1S120A,T148A,T183A induces migration. In summary, these data show that JNK phosphorylation of MARCKSL1 regulates actin homeostasis, filopodium and lamellipodium formation, and neuronal migration under physiological conditions and that, when ectopically expressed in prostate cancer cells, MARCKSL1 again determines cell movement.
    Full-text · Article · Jul 2012 · Molecular and Cellular Biology
  • Source
    Katholiki Skopelitou · Prathusha Dhavala · Anastassios C Papageorgiou · Nikolaos E Labrou
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present work, we report a novel class of glutathione transferases (GSTs) originated from the pathogenic soil bacterium Agrobacterium tumefaciens C58, with structural and catalytic properties not observed previously in prokaryotic and eukaryotic GST isoenzymes. A GST-like sequence from A. tumefaciens C58 (Atu3701) with low similarity to other characterized GST family of enzymes was identified. Phylogenetic analysis showed that it belongs to a distinct GST class not previously described and restricted only in soil bacteria, called the Eta class (H). This enzyme (designated as AtuGSTH1-1) was cloned and expressed in E. coli and its structural and catalytic properties were investigated. Functional analysis showed that AtuGSTH1-1 exhibits significant transferase activity against the common substrates aryl halides, as well as very high peroxidase activity towards organic hydroperoxides. The crystal structure of AtuGSTH1-1 was determined at 1.4 Å resolution in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH). Although AtuGSTH1-1 adopts the canonical GST fold, sequence and structural characteristics distinct from previously characterized GSTs were identified. The absence of the classic catalytic essential residues (Tyr, Ser, Cys) distinguishes AtuGSTH1-1 from all other cytosolic GSTs of known structure and function. Site-directed mutagenesis showed that instead of the classic catalytic residues, an Arg residue (Arg34), an electron-sharing network, and a bridge of a network of water molecules may form the basis of the catalytic mechanism. Comparative sequence analysis, structural information, and site-directed mutagenesis in combination with kinetic analysis showed that Phe22, Ser25, and Arg187 are additional important residues for the enzyme's catalytic efficiency and specificity.
    Full-text · Article · Apr 2012 · PLoS ONE
  • Source
    Duo-Chuan Li · An-Na Li · Anastassios C Papageorgiou
    [Show abstract] [Hide abstract]
    ABSTRACT: Thermophilic fungal cellulases are promising enzymes in protein engineering efforts aimed at optimizing industrial processes, such as biomass degradation and biofuel production. The cloning and expression in recent years of new cellulase genes from thermophilic fungi have led to a better understanding of cellulose degradation in these species. Moreover, crystal structures of thermophilic fungal cellulases are now available, providing insights into their function and stability. The present paper is focused on recent progress in cloning, expression, regulation, and structure of thermophilic fungal cellulases and the current research efforts to improve their properties for better use in biotechnological applications.
    Preview · Article · Nov 2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present work, we describe the characterisation of the glutathione transferase (GST) gene family from Agrobacterium tumefaciens C58. A genome survey revealed the presence of eight GST-like proteins in A. tumefaciens (AtuGSTs). Comparison by multiple sequence alignment generated a dendrogram revealing the phylogenetic relationships of AtuGSTs-like proteins. The beta and theta classes identified in other bacterial species are represented by five members in A. tumefaciens C58. In addition, there are three "orphan" sequences that do not fit into any previously recognised GST classes. The eight GST-like genes were cloned, expressed in Escherichia coli and their substrate specificity was determined towards 17 different substrates. The results showed that AtuGSTs catalyse a broad range of reactions, with different members of the family exhibiting quite varied substrate specificity. The 3D structures of AtuGSTs were predicted using molecular modelling. The use of comparative sequence and structural analysis of the AtuGST isoenzymes allowed us to identify local sequence and structural characteristics between different GST isoenzymes and classes. Gene expression profiling was conducted under normal culture conditions as well as under abiotic stress conditions (addition of xenobiotics, osmotic stress and cold and heat shock) to induce and monitor early stress-response mechanisms. The results reveal the constitutive expression of GSTs in A. tumefaciens and a modulation of GST activity after treatments, indicating that AtuGSTs presumably participate in a wide range of functions, many of which are important in counteracting stress conditions. These functions may be relevant to maintaining cellular homeostasis as well as in the direct detoxification of toxic compounds.
    Full-text · Article · Sep 2011 · Functional & Integrative Genomics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Streptococcus suis Dpr belongs to the Dps family of bacterial and archaeal proteins that oxidize Fe(2+) to Fe(3+) to protect microorganisms from oxidative damage. The oxidized iron is subsequently deposited as ferrihydrite inside a protein cavity, resulting in the formation of an iron core. The size and the magnetic properties of the iron core have attracted considerable attention for nanotechnological applications in recent years. Here, the magnetic and structural properties of the iron core in wild-type Dpr and four cavity mutants were studied. All samples clearly demonstrated a superparamagnetic behavior in superconducting quantum interference device magnetometry and Mössbauer spectroscopy compatible with that of superparamagnetic ferrihydrite nanoparticles. However, all the mutants exhibited higher magnetic moments than the wild-type protein. Furthermore, measurement of the iron content with inductively coupled plasma mass spectrometry revealed a smaller amount of iron in the iron cores of the mutants, suggesting that the mutations affect nucleation and iron deposition inside the cavity. The X-ray crystal structures of the mutants revealed no changes compared with the wild-type crystal structure; thus, the differences in the magnetic moments could not be attributed to structural changes in the protein. Extended X-ray absorption fine structure measurements showed that the coordination geometry of the iron cores of the mutants was similar to that of the wild-type protein. Taken together, these results suggest that mutation of the residues that surround the iron storage cavity could be exploited to selectively modify the magnetic properties of the iron core without affecting the structure of the protein and the geometry of the iron core.
    No preview · Article · Jun 2011 · European Journal of Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of protein cages for the creation of novel inorganic nanomaterials has attracted considerable attention in recent years. Ferritins are among the most commonly used protein cages in nanoscience. Accordingly, the binding of various metals to ferritins has been studied extensively. Dps (DNA-binding protein from starved cells)-like proteins belong to the ferritin superfamily. In contrast to ferritins, Dps-like proteins form 12-mers instead of 24-mers, have a different ferroxidase center, and are able to store a smaller amount of iron atoms in a hollow cavity (up to ∼500, instead of the ∼4500 iron atoms found in ferritins). With the exception of iron, the binding of other metal cations to Dps proteins has not been studied in detail. Here, the binding of six divalent metal ions (Zn(2+), Mn(2+), Ni(2+), Co(2+), Cu(2+), and Mg(2+)) to Streptococcus suisDps-like peroxide resistance protein (SsDpr) was characterized by X-ray crystallography and isothermal titration calorimetry (ITC). All metal cations, except for Mg(2+), were found to bind to the ferroxidase center similarly to Fe(2+), with moderate affinity (binding constants between 0.1×10(5) M(-1) and 5×10(5) M(-1)). The stoichiometry of binding, as deduced by ITC data, suggested the presence of a dication ferroxidase site. No other metal binding sites were identified in the protein. The results presented here demonstrate the ability of SsDpr to bind various metals as substitutes for iron and will help in better understanding protein-metal interactions in the Dps family of proteins as potential metal nanocontainers.
    No preview · Article · Nov 2010 · Journal of Molecular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cu,Zn superoxide dismutase (Cu,ZnSOD) from the thermophilic fungus Chaetomium thermophilum was expressed in Pichia pastoris and purified. Crystals were grown in over 120 conditions but only those produced with 1.4 M sodium potassium phosphate pH 8.2 as precipitant were suitable for structural studies. Data were collected to 1.9 A resolution at 100 K from a single crystal using a synchrotron-radiation source. The crystals belonged to space group P6(1)/P6(5), with unit-cell parameters a=90.2, c=314.5 A and eight molecules in the asymmetric unit. Elucidation of the crystal structure will provide insights into the active site of the enzyme and a better understanding of the structure-activity relationship, assembly and thermal stability of Cu,ZnSODs.
    Full-text · Article · Sep 2010 · Acta Crystallographica Section F Structural Biology and Crystallization Communications
  • Teemu Haikarainen · Chih-Cheng Tsou · Jiunn-Jong Wu · Anastassios C Papageorgiou
    [Show abstract] [Hide abstract]
    ABSTRACT: Dps proteins contain a ferroxidase site that binds and oxidizes iron, thereby preventing hydroxyl radical formation by Fenton reaction. Although the involvement of a di-iron ferroxidase site has been suggested, X-ray crystal structures of various Dps members have shown either one or two iron cations with various occupancies despite the high structural conservation of the site. Similarly, structural studies with zinc, a redox-stable replacement for iron, have shown the binding of either one or two zinc ions. Here, the crystal structure of Streptococcus pyogenes Dpr in complex with zinc reveals the binding of two zinc cations in the ferroxidase center and an additional zinc-binding site at the surface of the protein. The results suggest a structural basis for the protection of Streptococcus pyogenes in zinc stress conditions and provide a clear evidence for a di-zinc and di-iron ferroxidase site in Streptococcus pyogenes Dpr protein.
    No preview · Article · Jul 2010 · Biochemical and Biophysical Research Communications
  • Sotirios C Melissis · Anastassios C Papageorgiou · Nikolaos E Labrou · Yannis D Clonis
    [Show abstract] [Hide abstract]
    ABSTRACT: Reverse transcriptase (RT) catalyzes the formation of dsDNA from single-stranded retroviral RNA genome. This enzyme is unique among DNA polymerases in its ability to use either RNA or DNA as a template. Moloney Murine Leukemia virus reverse transcriptase lacking RNase H activity (M-MLVH- RT) especially holds particular interest because of its ability to eliminate the deleterious effect of RNase H, which results in more efficient synthesis of full-length cDNA from mRNA. Therefore, the development of a simple purification method attracts the attention of retroviral drug and enzyme researchers and manufacturers. The present work is the first purification example of a non-tagged (native) RT by affinity chromatography using synthetic affinity ligands. In this study, the ligand was selected from a structure-biased combinatorial library of dNTP-mimetic ligands, and it was evaluated for its ability to bind and purify M-MLVH- RT from inclusion bodies of recombinant E. coli. The selected ligand (AEAd), bearing 9-aminoethyladenine and 1,6-diamine-hexane both linked on the same triazine scaffold, displayed the highest enzyme purifying ability after applying mild desorption conditions (6 mM MnCl(2) in 20 mM Tris-HCl buffer, pH 7.5). The binding capacity of immobilized AEAd with M-MLVH- RT was determined to be equal to approximately 1 mg enzyme/g moist weight gel. Adsorption studies with immobilized AEAd and soluble M-MLVH- RT demonstrated that the formation of the respective complex was perturbed by ATP. Quality control tests of the purified M-MLVH- RT essentially showed a single band (sodium dodecyl sulfate polyacrylamide gel electrophoresis) and absence of nucleic acids and contaminating nuclease activities.
    No preview · Article · Jul 2010 · Journal of chromatographic science
  • N E Labrou · A.C. Papageorgiou · V I Avramis
    [Show abstract] [Hide abstract]
    ABSTRACT: L-asparaginase (L-ASNase, EC catalyzes the hydrolysis of the non-essential amino acid L-Asn to LAsp and ammonia and is widely used for the treatment of haematopoetic diseases such as acute lymphoblastic leukaemia (ALL) and lymphomas. Therapeutic forms of L-ASNase come from different biological sources (primarily E. coli and Erwinia chrysanthemi). It is well established that the various preparations have different biochemical pharmacology properties, and different tendency to induce side-effects. This is due to different structural, physicochemical and kinetic properties of L-ASNases from the various biological sources. Understanding these properties of various L-ASNases would allow a better decipherment of their catalytic and therapeutic features, thus enabling more accurate predictions of the behaviour of these enzymes under a variety of therapeutic conditions. In addition, detailed understanding of the catalytic mechanism of L-ASNases might permit the design of new forms of L-ASNases with optimal biochemical properties for clinical applications. In this paper we review the available biochemical and pharmacokinetic information of the therapeutic forms of bacterial L-ASNases, and focus on a detailed description of structure, function and clinical applications of these enzymes.
    No preview · Article · Jul 2010 · Current Medicinal Chemistry

Publication Stats

2k Citations
293.85 Total Impact Points


  • 2002-2015
    • Åbo Akademi University
      • Turku Centre for Biotechnology
      Turku, Varsinais-Suomi, Finland
    • University of Turku
      • • MediCity Research Laboratory
      • • Turku Centre for Biotechnology
      • • Department of Medical Biochemistry and Genetics
      Turku, Southwest Finland, Finland
  • 2003-2010
    • Turku centre for biotechnology, finland
      Turku, Varsinais-Suomi, Finland
  • 1995-2009
    • University of Bath
      • Department of Biology and Biochemistry
      Bath, England, United Kingdom
    • University of Oxford
      • Laboratory of Molecular Biophysics
      Oxford, ENG, United Kingdom
  • 1989-1992
    • National Hellenic Research Foundation
      • Institute of Biology, Medicinal Chemistry and Biotechnology
      Athínai, Attica, Greece